BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 37569765)

  • 1. Asbestos and Iron.
    Ghio AJ; Stewart M; Sangani RG; Pavlisko EN; Roggli VL
    Int J Mol Sci; 2023 Aug; 24(15):. PubMed ID: 37569765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The biological effect of asbestos exposure is dependent on changes in iron homeostasis.
    Ghio AJ; Soukup JM; Dailey LA; Richards JH; Tong H
    Inhal Toxicol; 2016 Dec; 28(14):698-705. PubMed ID: 27884072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The biopersistence of brazilian chrysotile asbestos following inhalation.
    Bernstein DM; Rogers R; Smith P
    Inhal Toxicol; 2004; 16(11-12):745-61. PubMed ID: 16036745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the dose-response and fate in the lung and pleura of chrysotile-containing brake dust compared to TiO
    Bernstein DM; Toth B; Rogers RA; Kling DE; Kunzendorf P; Phillips JI; Ernst H
    Toxicol Appl Pharmacol; 2020 Jan; 387():114847. PubMed ID: 31830492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of genotoxic effects in asbestos-exposed primary human mesothelial cells by radical scavengers, metal chelators and a glutathione precursor.
    Poser I; Rahman Q; Lohani M; Yadav S; Becker HH; Weiss DG; Schiffmann D; Dopp E
    Mutat Res; 2004 Apr; 559(1-2):19-27. PubMed ID: 15066570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of beta-glucuronidase in effluent of perifused alveolar macrophages challenged with chemically modified chrysotile asbestos.
    Forget G; Lacroix MJ; Calvert R; Sirois P
    Inflammation; 1984 Jun; 8(2):123-41. PubMed ID: 6086522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular and molecular basis of the asbestos-related diseases.
    Rom WN; Travis WD; Brody AR
    Am Rev Respir Dis; 1991 Feb; 143(2):408-22. PubMed ID: 1990961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deposition and clearance of chrysotile asbestos.
    Churg A
    Ann Occup Hyg; 1994 Aug; 38(4):625-33, 424-5. PubMed ID: 7978985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidant generation promotes iron sequestration in BEAS-2B cells exposed to asbestos.
    Wang X; Wu Y; Stonehuerner JG; Dailey LA; Richards JD; Jaspers I; Piantadosi CA; Ghio AJ
    Am J Respir Cell Mol Biol; 2006 Mar; 34(3):286-92. PubMed ID: 16272461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The biopersistence of Canadian chrysotile asbestos following inhalation.
    Bernstein DM; Rogers R; Smith P
    Inhal Toxicol; 2003 Nov; 15(13):1247-74. PubMed ID: 14569492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative proliferative and histopathologic changes in rat lungs after inhalation of chrysotile or crocidolite asbestos.
    BéruBé KA; Quinlan TR; Moulton G; Hemenway D; O'Shaughnessy P; Vacek P; Mossman BT
    Toxicol Appl Pharmacol; 1996 Mar; 137(1):67-74. PubMed ID: 8607143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Calidria chrysotile asbestos to pure tremolite: inhalation biopersistence and histopathology following short-term exposure.
    Bernstein DM; Chevalier J; Smith P
    Inhal Toxicol; 2003 Dec; 15(14):1387-419. PubMed ID: 14648356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the exposure, dose-response and fate in the lung and pleura of chrysotile-containing brake dust compared to TiO
    Bernstein DM; Toth B; Rogers RA; Kling DE; Kunzendorf P; Phillips JI; Ernst H
    Toxicol Appl Pharmacol; 2020 Jan; 387():114856. PubMed ID: 31836523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA strand breaks following in vitro exposure to asbestos increase with surface-complexed [Fe3+].
    Ghio AJ; Kennedy TP; Stonehuerner JG; Crumbliss AL; Hoidal JR
    Arch Biochem Biophys; 1994 May; 311(1):13-8. PubMed ID: 8185309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying the reactive sites of hydrogen peroxide decomposition and hydroxyl radical formation on chrysotile asbestos surfaces.
    Walter M; Schenkeveld WDC; Geroldinger G; Gille L; Reissner M; Kraemer SM
    Part Fibre Toxicol; 2020 Jan; 17(1):3. PubMed ID: 31959185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the fate and pathological response in the lung and pleura of brake dust alone and in combination with added chrysotile compared to crocidolite asbestos following short-term inhalation exposure.
    Bernstein DM; Rogers RA; Sepulveda R; Kunzendorf P; Bellmann B; Ernst H; Creutzenberg O; Phillips JI
    Toxicol Appl Pharmacol; 2015 Feb; 283(1):20-34. PubMed ID: 25560675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asbestos fibers contributing to the induction of human malignant mesothelioma.
    Suzuki Y; Yuen SR
    Ann N Y Acad Sci; 2002 Dec; 982():160-76. PubMed ID: 12562635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inorganic materials and living organisms: surface modifications and fungal responses to various asbestos forms.
    Daghino S; Martino E; Fenoglio I; Tomatis M; Perotto S; Fubini B
    Chemistry; 2005 Sep; 11(19):5611-8. PubMed ID: 16021644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lung proliferative and clearance responses to inhaled para-aramid RFP in exposed hamsters and rats: comparisons with chrysotile asbestos fibers.
    Warheit DB; Snajdr SI; Hartsky MA; Frame SR
    Environ Health Perspect; 1997 Sep; 105 Suppl 5(Suppl 5):1219-22. PubMed ID: 9400727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron mobilization from asbestos by chelators and ascorbic acid.
    Lund LG; Aust AE
    Arch Biochem Biophys; 1990 Apr; 278(1):61-4. PubMed ID: 2321970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.