BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 37569766)

  • 1. RNA-Based Control of Fungal Pathogens in Plants.
    Mann CWG; Sawyer A; Gardiner DM; Mitter N; Carroll BJ; Eamens AL
    Int J Mol Sci; 2023 Aug; 24(15):. PubMed ID: 37569766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning Beforehand: A Foresight on RNA Interference (RNAi) and In Vitro-Derived dsRNAs to Enhance Crop Resilience to Biotic and Abiotic Stresses.
    Abdellatef E; Kamal NM; Tsujimoto H
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesizing Fluorescently Labeled dsRNAs and sRNAs to Visualize Fungal RNA Uptake.
    Hamby R; Wang M; Qiao L; Jin H
    Methods Mol Biol; 2020; 2166():215-225. PubMed ID: 32710411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNAi Crop Protection Advances.
    Hernández-Soto A; Chacón-Cerdas R
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mycovirus-encoded suppressors of RNA silencing: Possible allies or enemies in the use of RNAi to control fungal disease in crops.
    Rodriguez Coy L; Plummer KM; Khalifa ME; MacDiarmid RM
    Front Fungal Biol; 2022; 3():965781. PubMed ID: 37746227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-kingdom RNA trafficking and environmental RNAi-nature's blueprint for modern crop protection strategies.
    Cai Q; He B; Kogel KH; Jin H
    Curr Opin Microbiol; 2018 Dec; 46():58-64. PubMed ID: 29549797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving RNA-based crop protection through nanotechnology and insights from cross-kingdom RNA trafficking.
    Chen A; Halilovic L; Shay JH; Koch A; Mitter N; Jin H
    Curr Opin Plant Biol; 2023 Dec; 76():102441. PubMed ID: 37696727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNAs - a new frontier in crop protection.
    Niu D; Hamby R; Sanchez JN; Cai Q; Yan Q; Jin H
    Curr Opin Biotechnol; 2021 Aug; 70():204-212. PubMed ID: 34217122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trans-Kingdom RNA Silencing in Plant-Fungal Pathogen Interactions.
    Hua C; Zhao JH; Guo HS
    Mol Plant; 2018 Feb; 11(2):235-244. PubMed ID: 29229568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA Interference: Promising Approach to Combat Plant Viruses.
    Akbar S; Wei Y; Zhang MQ
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spray-Induced Silencing of Pathogenicity Gene
    Sarkar A; Roy-Barman S
    Front Plant Sci; 2021; 12():733129. PubMed ID: 34899771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spray-Induced Gene Silencing: a Powerful Innovative Strategy for Crop Protection.
    Wang M; Jin H
    Trends Microbiol; 2017 Jan; 25(1):4-6. PubMed ID: 27923542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BioClay™ prolongs RNA interference-mediated crop protection against Botrytis cinerea.
    Niño-Sánchez J; Sambasivam PT; Sawyer A; Hamby R; Chen A; Czislowski E; Li P; Manzie N; Gardiner DM; Ford R; Xu ZP; Mitter N; Jin H
    J Integr Plant Biol; 2022 Nov; 64(11):2187-2198. PubMed ID: 36040241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concepts and considerations for enhancing RNAi efficiency in phytopathogenic fungi for RNAi-based crop protection using nanocarrier-mediated dsRNA delivery systems.
    Ray P; Sahu D; Aminedi R; Chandran D
    Front Fungal Biol; 2022; 3():977502. PubMed ID: 37746174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Insights on the Integrated Management of Plant Diseases by RNA Strategies: Mycoviruses and RNA Interference.
    Bocos-Asenjo IT; Niño-Sánchez J; Ginésy M; Diez JJ
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of Sclerotinia sclerotiorum via an RNA interference (RNAi)-mediated targeting of SsPac1 and SsSmk1.
    Pant P; Kaur J
    Planta; 2024 May; 259(6):153. PubMed ID: 38744752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An RNAi-Based Control of Fusarium graminearum Infections Through Spraying of Long dsRNAs Involves a Plant Passage and Is Controlled by the Fungal Silencing Machinery.
    Koch A; Biedenkopf D; Furch A; Weber L; Rossbach O; Abdellatef E; Linicus L; Johannsmeier J; Jelonek L; Goesmann A; Cardoza V; McMillan J; Mentzel T; Kogel KH
    PLoS Pathog; 2016 Oct; 12(10):e1005901. PubMed ID: 27737019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and Characterization of Barley (
    Schlemmer T; Barth P; Weipert L; Preußer C; Hardt M; Möbus A; Busche T; Koch A
    Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Application of host induced gene silencing in crop protection against fungal diseases].
    Jin Y; Zhang T; Guo H
    Sheng Wu Gong Cheng Xue Bao; 2017 Feb; 33(2):161-169. PubMed ID: 28956372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA interference approaches for plant disease control.
    Kuo YW; Falk BW
    Biotechniques; 2020 Dec; 69(6):469-477. PubMed ID: 33070628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.