BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 37569766)

  • 21. Advances in the mechanisms and applications of RNA silencing in crop protection.
    Wen T; Ting C; Qing-Yan L; Bosen Z; Hui-Shan G; Jian-Hua Z
    Yi Chuan; 2024 Apr; 46(4):266-278. PubMed ID: 38632090
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Challenges and Opportunities Arising from Host-
    Spada M; Pugliesi C; Fambrini M; Pecchia S
    Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928507
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Requirements for fungal uptake of dsRNA and gene silencing in RNAi-based crop protection strategies.
    Šečić E; Kogel KH
    Curr Opin Biotechnol; 2021 Aug; 70():136-142. PubMed ID: 34000482
    [TBL] [Abstract][Full Text] [Related]  

  • 24. dsRNA Uptake in Plant Pests and Pathogens: Insights into RNAi-Based Insect and Fungal Control Technology.
    Wytinck N; Manchur CL; Li VH; Whyard S; Belmonte MF
    Plants (Basel); 2020 Dec; 9(12):. PubMed ID: 33339102
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent Progress on Nanocarriers for Topical-Mediated RNAi Strategies for Crop Protection-A Review.
    Mat Jalaluddin NS; Asem M; Harikrishna JA; Ahmad Fuaad AAH
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985671
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Artificial nanovesicles for dsRNA delivery in spray-induced gene silencing for crop protection.
    Qiao L; Niño-Sánchez J; Hamby R; Capriotti L; Chen A; Mezzetti B; Jin H
    Plant Biotechnol J; 2023 Apr; 21(4):854-865. PubMed ID: 36601704
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring the Effectiveness and Durability of Trans-Kingdom Silencing of Fungal Genes in the Vascular Pathogen
    Zhang T; Zhao JH; Fang YY; Guo HS; Jin Y
    Int J Mol Sci; 2022 Mar; 23(5):. PubMed ID: 35269884
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RNA-Spray-Mediated Silencing of
    Werner BT; Gaffar FY; Schuemann J; Biedenkopf D; Koch AM
    Front Plant Sci; 2020; 11():476. PubMed ID: 32411160
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RNAi Technology: A New Path for the Research and Management of Obligate Biotrophic Phytopathogenic Fungi.
    Padilla-Roji I; Ruiz-Jiménez L; Bakhat N; Vielba-Fernández A; Pérez-García A; Fernández-Ortuño D
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240427
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Secondary amplification of siRNA machinery limits the application of spray-induced gene silencing.
    Song XS; Gu KX; Duan XX; Xiao XM; Hou YP; Duan YB; Wang JX; Yu N; Zhou MG
    Mol Plant Pathol; 2018 Dec; 19(12):2543-2560. PubMed ID: 30027625
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study on the efficiency of dsRNAs with increasing length in RNA-based silencing of the
    Höfle L; Biedenkopf D; Werner BT; Shrestha A; Jelonek L; Koch A
    RNA Biol; 2020 Apr; 17(4):463-473. PubMed ID: 31814508
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lab-to-Field Transition of RNA Spray Applications - How Far Are We?
    Rank AP; Koch A
    Front Plant Sci; 2021; 12():755203. PubMed ID: 34721485
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RNAi as a Foliar Spray: Efficiency and Challenges to Field Applications.
    Hoang BTL; Fletcher SJ; Brosnan CA; Ghodke AB; Manzie N; Mitter N
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743077
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New wind in the sails: improving the agronomic value of crop plants through RNAi-mediated gene silencing.
    Koch A; Kogel KH
    Plant Biotechnol J; 2014 Sep; 12(7):821-31. PubMed ID: 25040343
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbe-induced gene silencing boosts crop protection against soil-borne fungal pathogens.
    Wen HG; Zhao JH; Zhang BS; Gao F; Wu XM; Yan YS; Zhang J; Guo HS
    Nat Plants; 2023 Sep; 9(9):1409-1418. PubMed ID: 37653339
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RNA Interference Past and Future Applications in Plants.
    Koeppe S; Kawchuk L; Kalischuk M
    Int J Mol Sci; 2023 Jun; 24(11):. PubMed ID: 37298705
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of postharvest fungal diseases in fruits using external application of RNAi.
    de Oliveira Filho JG; Silva GDC; Cipriano L; Gomes M; Egea MB
    J Food Sci; 2021 Aug; 86(8):3341-3348. PubMed ID: 34272735
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Artificial nanovesicles for dsRNA delivery in spray induced gene silencing for crop protection.
    Qiao L; Niño-Sánchez J; Hamby R; Capriotti L; Chen A; Mezzetti B; Jin H
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711993
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crop improvement using small RNAs: applications and predictive ecological risk assessments.
    Auer C; Frederick R
    Trends Biotechnol; 2009 Nov; 27(11):644-51. PubMed ID: 19796832
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RNAi-Based Biofungicides as a Promising Next-Generation Strategy for Controlling Devastating Gray Mold Diseases.
    Islam MT; Sherif SM
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32197315
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.