BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 37569766)

  • 41. Host-induced gene silencing of wheat leaf rust fungus Puccinia triticina pathogenicity genes mediated by the Barley stripe mosaic virus.
    Panwar V; McCallum B; Bakkeren G
    Plant Mol Biol; 2013 Apr; 81(6):595-608. PubMed ID: 23417582
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Small RNA-based plant protection against diseases.
    Bilir Ö; Göl D; Hong Y; McDowell JM; Tör M
    Front Plant Sci; 2022; 13():951097. PubMed ID: 36061762
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cross-kingdom RNA trafficking and environmental RNAi for powerful innovative pre- and post-harvest plant protection.
    Wang M; Thomas N; Jin H
    Curr Opin Plant Biol; 2017 Aug; 38():133-141. PubMed ID: 28570950
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Impact of biotic stresses on the Brassicaceae family and opportunities for crop improvement by exploiting genotyping traits.
    Das Laha S; Kundu A; Podder S
    Planta; 2024 Mar; 259(5):97. PubMed ID: 38520529
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Current Scenario of Exogenously Induced RNAi for Lepidopteran Agricultural Pest Control: From dsRNA Design to Topical Application.
    Lucena-Leandro VS; Abreu EFA; Vidal LA; Torres CR; Junqueira CICVF; Dantas J; Albuquerque ÉVS
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555476
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Double-stranded RNA (dsRNA) technology to control forest insect pests and fungal pathogens: challenges and opportunities.
    Singewar K; Fladung M
    Funct Integr Genomics; 2023 May; 23(2):185. PubMed ID: 37243792
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Host-induced gene silencing - mechanisms and applications.
    Koch A; Wassenegger M
    New Phytol; 2021 Jul; 231(1):54-59. PubMed ID: 33774815
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A fungal RNA-dependent RNA polymerase is a novel player in plant infection and cross-kingdom RNA interference.
    Cheng AP; Lederer B; Oberkofler L; Huang L; Johnson NR; Platten F; Dunker F; Tisserant C; Weiberg A
    PLoS Pathog; 2023 Dec; 19(12):e1011885. PubMed ID: 38117848
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Trans-kingdom RNAs and their fates in recipient cells: advances, utilization, and perspectives.
    Zhao JH; Zhang T; Liu QY; Guo HS
    Plant Commun; 2021 Mar; 2(2):100167. PubMed ID: 33898979
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recent Progress in Enhancing Fungal Disease Resistance in Ornamental Plants.
    Mekapogu M; Jung JA; Kwon OK; Ahn MS; Song HY; Jang S
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360726
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Catch Me If You Can! RNA Silencing-Based Improvement of Antiviral Plant Immunity.
    Gaffar FY; Koch A
    Viruses; 2019 Jul; 11(7):. PubMed ID: 31340474
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Artificial trans-kingdom RNAi of FolRDR1 is a potential strategy to control tomato wilt disease.
    Ouyang SQ; Ji HM; Feng T; Luo SJ; Cheng L; Wang N
    PLoS Pathog; 2023 Jun; 19(6):e1011463. PubMed ID: 37339156
    [TBL] [Abstract][Full Text] [Related]  

  • 53. RNA Interference (RNAi) as a Potential Tool for Control of Mycotoxin Contamination in Crop Plants: Concepts and Considerations.
    Majumdar R; Rajasekaran K; Cary JW
    Front Plant Sci; 2017; 8():200. PubMed ID: 28261252
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Roles of small RNAs in crop disease resistance.
    Tang J; Gu X; Liu J; He Z
    Stress Biol; 2021 Aug; 1(1):6. PubMed ID: 37676520
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spray-Induced Gene Silencing to Study Gene Function in Phytophthora.
    Sundararajan P; Kalyandurg PB; Liu Q; Chawade A; Whisson SC; Vetukuri RR
    Methods Mol Biol; 2022; 2536():459-474. PubMed ID: 35819621
    [TBL] [Abstract][Full Text] [Related]  

  • 56. RNA silencing technology: A boon for crop improvement.
    Rajam MV
    J Biosci; 2020; 45():. PubMed ID: 33051412
    [TBL] [Abstract][Full Text] [Related]  

  • 57. RNA interference in crop plants.
    Kusaba M
    Curr Opin Biotechnol; 2004 Apr; 15(2):139-43. PubMed ID: 15081052
    [TBL] [Abstract][Full Text] [Related]  

  • 58. RNA interference and crop protection against biotic stresses.
    Kaur R; Choudhury A; Chauhan S; Ghosh A; Tiwari R; Rajam MV
    Physiol Mol Biol Plants; 2021 Oct; 27(10):2357-2377. PubMed ID: 34744371
    [TBL] [Abstract][Full Text] [Related]  

  • 59. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes.
    Zotti M; Dos Santos EA; Cagliari D; Christiaens O; Taning CNT; Smagghe G
    Pest Manag Sci; 2018 Jun; 74(6):1239-1250. PubMed ID: 29194942
    [TBL] [Abstract][Full Text] [Related]  

  • 60. RNA interference as a resistance mechanism against crop parasites in Africa: a 'Trojan horse' approach.
    Runo S; Alakonya A; Machuka J; Sinha N
    Pest Manag Sci; 2011 Feb; 67(2):129-36. PubMed ID: 21061276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.