BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 37569766)

  • 61. RNA interference as a resistance mechanism against crop parasites in Africa: a 'Trojan horse' approach.
    Runo S; Alakonya A; Machuka J; Sinha N
    Pest Manag Sci; 2011 Feb; 67(2):129-36. PubMed ID: 21061276
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Study on RNAi-based herbicide for
    Mai J; Liao L; Ling R; Guo X; Lin J; Mo B; Chen W; Yu Y
    Synth Syst Biotechnol; 2021 Dec; 6(4):437-445. PubMed ID: 34901482
    [TBL] [Abstract][Full Text] [Related]  

  • 63. RNAi-mediated silencing of MAP kinase signalling genes (Fmk1, Hog1, and Pbs2) in Fusarium oxysporum reduces pathogenesis on tomato plants.
    Pareek M; Rajam MV
    Fungal Biol; 2017 Sep; 121(9):775-784. PubMed ID: 28800849
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cross-Kingdom Small RNAs Among Animals, Plants and Microbes.
    Zeng J; Gupta VK; Jiang Y; Yang B; Gong L; Zhu H
    Cells; 2019 Apr; 8(4):. PubMed ID: 31018602
    [TBL] [Abstract][Full Text] [Related]  

  • 65. RNA silencing: From discovery and elucidation to application and perspectives.
    Zhao JH; Guo HS
    J Integr Plant Biol; 2022 Feb; 64(2):476-498. PubMed ID: 34964265
    [TBL] [Abstract][Full Text] [Related]  

  • 66. RNAi-induced silencing of the succinate dehydrogenase subunits gene in Colletotrichum abscissum, the causal agent of postbloom fruit drop (PFD) in citrus.
    Goulin EH; de Lima TA; Dos Santos PJC; Machado MA
    Microbiol Res; 2022 Jul; 260():126938. PubMed ID: 35500454
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Natural Host-Induced Gene Silencing Offers New Opportunities to Engineer Disease Resistance.
    Hou Y; Ma W
    Trends Microbiol; 2020 Feb; 28(2):109-117. PubMed ID: 31606358
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Minicell-based fungal RNAi delivery for sustainable crop protection.
    Islam MT; Davis Z; Chen L; Englaender J; Zomorodi S; Frank J; Bartlett K; Somers E; Carballo SM; Kester M; Shakeel A; Pourtaheri P; Sherif SM
    Microb Biotechnol; 2021 Jul; 14(4):1847-1856. PubMed ID: 33624940
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Extracellular vesicles isolated from dsRNA-sprayed barley plants exhibit no growth inhibition or gene silencing in Fusarium graminearum.
    Schlemmer T; Lischka R; Wegner L; Ehlers K; Biedenkopf D; Koch A
    Fungal Biol Biotechnol; 2022 Jul; 9(1):14. PubMed ID: 35836276
    [TBL] [Abstract][Full Text] [Related]  

  • 70. RNAi-Based Gene Silencing of RXLR Effectors Protects Plants Against the Oomycete Pathogen
    Cheng W; Lin M; Chu M; Xiang G; Guo J; Jiang Y; Guan D; He S
    Mol Plant Microbe Interact; 2022 Jun; 35(6):440-449. PubMed ID: 35196108
    [No Abstract]   [Full Text] [Related]  

  • 71. A Combinatorial Nanobased Spray-Induced Gene Silencing Technique for Crop Protection and Improvement.
    Ghosh S; Patra S; Ray S
    ACS Omega; 2023 Jun; 8(25):22345-22351. PubMed ID: 37396279
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Insect pathogens as biological control agents: Back to the future.
    Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS
    J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455
    [TBL] [Abstract][Full Text] [Related]  

  • 73. SIGS vs HIGS: a study on the efficacy of two dsRNA delivery strategies to silence Fusarium FgCYP51 genes in infected host and non-host plants.
    Koch A; Höfle L; Werner BT; Imani J; Schmidt A; Jelonek L; Kogel KH
    Mol Plant Pathol; 2019 Dec; 20(12):1636-1644. PubMed ID: 31603277
    [TBL] [Abstract][Full Text] [Related]  

  • 74. RNA Interference (RNAi) Induced Gene Silencing: A Promising Approach of Hi-Tech Plant Breeding.
    Younis A; Siddique MI; Kim CK; Lim KB
    Int J Biol Sci; 2014; 10(10):1150-8. PubMed ID: 25332689
    [TBL] [Abstract][Full Text] [Related]  

  • 75. RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels.
    Gilbert MK; Majumdar R; Rajasekaran K; Chen ZY; Wei Q; Sickler CM; Lebar MD; Cary JW; Frame BR; Wang K
    Planta; 2018 Jun; 247(6):1465-1473. PubMed ID: 29541880
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Recent trends and advances of RNA interference (RNAi) to improve agricultural crops and enhance their resilience to biotic and abiotic stresses.
    Bharathi JK; Anandan R; Benjamin LK; Muneer S; Prakash MAS
    Plant Physiol Biochem; 2023 Jan; 194():600-618. PubMed ID: 36529010
    [TBL] [Abstract][Full Text] [Related]  

  • 77. RNAi-mediated protection against banana diseases and pests.
    Ghag SB; Ganapathi TR
    3 Biotech; 2019 Mar; 9(3):112. PubMed ID: 30863696
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Host-induced silencing of the Colletotrichum gloeosporioides conidial morphology 1 gene (CgCOM1) confers resistance against Anthracnose disease in chilli and tomato.
    Mahto BK; Singh A; Pareek M; Rajam MV; Dhar-Ray S; Reddy PM
    Plant Mol Biol; 2020 Nov; 104(4-5):381-395. PubMed ID: 32803478
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Global trends in research and commercialization of exogenous and endogenous RNAi technologies for crops.
    Mat Jalaluddin NS; Othman RY; Harikrishna JA
    Crit Rev Biotechnol; 2019 Feb; 39(1):67-78. PubMed ID: 30198341
    [TBL] [Abstract][Full Text] [Related]  

  • 80. RNA-Based Vaccination of Plants for Control of Viruses.
    Voloudakis AE; Kaldis A; Patil BL
    Annu Rev Virol; 2022 Sep; 9(1):521-548. PubMed ID: 36173698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.