These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 37569766)

  • 81. Bacterial and Fungal Biocontrol Agents for Plant Disease Protection: Journey from Lab to Field, Current Status, Challenges, and Global Perspectives.
    Ayaz M; Li CH; Ali Q; Zhao W; Chi YK; Shafiq M; Ali F; Yu XY; Yu Q; Zhao JT; Yu JW; Qi RD; Huang WK
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764510
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Molecular mechanisms underlying host-induced gene silencing.
    Zand Karimi H; Innes RW
    Plant Cell; 2022 Aug; 34(9):3183-3199. PubMed ID: 35666177
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Improving RNAi efficiency for pest control in crop species.
    Yan S; Ren B; Zeng B; Shen J
    Biotechniques; 2020 May; 68(5):283-290. PubMed ID: 32202134
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Evolution of Disease Defense Genes and Their Regulators in Plants.
    Zhang R; Zheng F; Wei S; Zhang S; Li G; Cao P; Zhao S
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30650550
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Impact of Exogenous Application of Potato Virus Y-Specific dsRNA on RNA Interference, Pattern-Triggered Immunity and Poly(ADP-ribose) Metabolism.
    Samarskaya VO; Spechenkova N; Markin N; Suprunova TP; Zavriev SK; Love AJ; Kalinina NO; Taliansky M
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887257
    [TBL] [Abstract][Full Text] [Related]  

  • 86. RNA interference and CRISPR: Promising approaches to better understand and control citrus pathogens.
    Goulin EH; Galdeano DM; Granato LM; Matsumura EE; Dalio RJD; Machado MA
    Microbiol Res; 2019 Sep; 226():1-9. PubMed ID: 31284938
    [TBL] [Abstract][Full Text] [Related]  

  • 87. RNA Interference Strategies for Future Management of Plant Pathogenic Fungi: Prospects and Challenges.
    Gebremichael DE; Haile ZM; Negrini F; Sabbadini S; Capriotti L; Mezzetti B; Baraldi E
    Plants (Basel); 2021 Mar; 10(4):. PubMed ID: 33805521
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Double-Stranded RNAs (dsRNAs) as a Sustainable Tool against Gray Mold (
    Nerva L; Sandrini M; Gambino G; Chitarra W
    Biomolecules; 2020 Jan; 10(2):. PubMed ID: 32013165
    [TBL] [Abstract][Full Text] [Related]  

  • 89. HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis.
    Nowara D; Gay A; Lacomme C; Shaw J; Ridout C; Douchkov D; Hensel G; Kumlehn J; Schweizer P
    Plant Cell; 2010 Sep; 22(9):3130-41. PubMed ID: 20884801
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Role of RNA interference in plant improvement.
    Jagtap UB; Gurav RG; Bapat VA
    Naturwissenschaften; 2011 Jun; 98(6):473-92. PubMed ID: 21503773
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Phylogenetic escape from pests reduces pesticides on some crop plants.
    Pearse IS; Rosenheim JA
    Proc Natl Acad Sci U S A; 2020 Oct; 117(43):26849-26853. PubMed ID: 33046649
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Trans-Species Mobility of RNA Interference between Plants and Associated Organisms.
    Nien YC; Vanek A; Axtell MJ
    Plant Cell Physiol; 2024 May; 65(5):694-703. PubMed ID: 38288670
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Seed treatments to control seedborne fungal pathogens of vegetable crops.
    Mancini V; Romanazzi G
    Pest Manag Sci; 2014 Jun; 70(6):860-8. PubMed ID: 24293285
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake.
    Qiao L; Lan C; Capriotti L; Ah-Fong A; Nino Sanchez J; Hamby R; Heller J; Zhao H; Glass NL; Judelson HS; Mezzetti B; Niu D; Jin H
    Plant Biotechnol J; 2021 Sep; 19(9):1756-1768. PubMed ID: 33774895
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Engineering pathogen resistance in crop plants.
    Campbell MA; Fitzgerald HA; Ronald PC
    Transgenic Res; 2002 Dec; 11(6):599-613. PubMed ID: 12509135
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Biotic stress triggered small RNA and RNAi defense response in plants.
    Ali M; Javaid A; Naqvi SH; Batcho A; Kayani WK; Lal A; Sajid IA; Nwogwugwu JO
    Mol Biol Rep; 2020 Jul; 47(7):5511-5522. PubMed ID: 32562176
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Host-Induced Gene Silencing: A Powerful Strategy to Control Diseases of Wheat and Barley.
    Qi T; Guo J; Peng H; Liu P; Kang Z; Guo J
    Int J Mol Sci; 2019 Jan; 20(1):. PubMed ID: 30626050
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Genetic modification in Malaysia and India: current regulatory framework and the special case of non-transformative RNAi in agriculture.
    Darsan Singh JK; Mat Jalaluddin NS; Sanan-Mishra N; Harikrishna JA
    Plant Cell Rep; 2019 Dec; 38(12):1449-1463. PubMed ID: 31350570
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Development and application of an RNA nanostructure to induce transient RNAi in difficult transgenic plants.
    Zhao X; Liu Z; Liu Y; Lu M; Xu J; Wu F; Jin W
    Biotechnol J; 2024 May; 19(5):e2400024. PubMed ID: 38797726
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Recombinant fungal entomopathogen RNAi target insect gene.
    Hu Q; Wu W
    Bioengineered; 2016 Nov; 7(6):504-507. PubMed ID: 27715447
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.