These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 37569911)
1. Analysis of the Frictional Performance of AW-5251 Aluminium Alloy Sheets Using the Random Forest Machine Learning Algorithm and Multilayer Perceptron. Trzepieciński T; Najm SM; Ibrahim OM; Kowalik M Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37569911 [TBL] [Abstract][Full Text] [Related]
2. Application of Artificial Neural Networks to the Analysis of Friction Behaviour in a Drawbead Profile in Sheet Metal Forming. Trzepieciński T; Najm SM Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556828 [TBL] [Abstract][Full Text] [Related]
3. Friction Behaviour of 6082-T6 Aluminium Alloy Sheets in a Strip Draw Tribological Test. Trzepieciński T; Slota J; Kaščák Ľ; Gajdoš I; Vojtko M Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984219 [TBL] [Abstract][Full Text] [Related]
4. An Experimental Study of the Frictional Properties of Steel Sheets Using the Drawbead Simulator Test. Trzepiecinski T; Kubit A; Slota J; Fejkiel R Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31817286 [TBL] [Abstract][Full Text] [Related]
5. Modelling of Friction Phenomena Existed in Drawbead in Sheet Metal Forming. Trzepieciński T; Kubit A; Fejkiel R; Chodoła Ł; Ficek D; Szczęsny I Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640289 [TBL] [Abstract][Full Text] [Related]
6. Application of the Gradient-Boosting with Regression Trees to Predict the Coefficient of Friction on Drawbead in Sheet Metal Forming. Najm SM; Trzepieciński T; Laouini SE; Kowalik M; Fejkiel R; Kowalik R Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336281 [TBL] [Abstract][Full Text] [Related]
7. Effect of Countersample Coatings on the Friction Behaviour of DC01 Steel Sheets in Bending-under-Tension Friction Tests. Trzepieciński T; Szwajka K; Szewczyk M; Barlak M; Zielińska-Szwajka J Materials (Basel); 2024 Jul; 17(15):. PubMed ID: 39124296 [TBL] [Abstract][Full Text] [Related]
8. The Comparison of the Multi-Layer Artificial Neural Network Training Methods in Terms of the Predictive Quality of the Coefficient of Friction of 1.0338 (DC04) Steel Sheet. Trzepieciński T Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399159 [TBL] [Abstract][Full Text] [Related]
9. Effect of Lubricant Type on the Friction Behaviours and Surface Topography in Metal Forming of Ti-6Al-4V Titanium Alloy Sheets. Szpunar M; Trzepieciński T; Żaba K; Ostrowski R; Zwolak M Materials (Basel); 2021 Jul; 14(13):. PubMed ID: 34279289 [TBL] [Abstract][Full Text] [Related]
10. Tribological Performance of Environmentally Friendly Bio-Degradable Lubricants Based on a Combination of Boric Acid and Bio-Based Oils. Trzepieciński T Materials (Basel); 2020 Sep; 13(17):. PubMed ID: 32899193 [TBL] [Abstract][Full Text] [Related]
11. Polynomial Multiple Regression Analysis of the Lubrication Effectiveness of Deep Drawing Quality Steel Sheets by Eco-Friendly Vegetable Oils. Trzepieciński T Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161095 [TBL] [Abstract][Full Text] [Related]
12. Modeling of Friction Phenomena of Ti-6Al-4V Sheets Based on Backward Elimination Regression and Multi-Layer Artificial Neural Networks. Trzepieciński T; Szpunar M; Kaščák Ľ Materials (Basel); 2021 May; 14(10):. PubMed ID: 34063434 [TBL] [Abstract][Full Text] [Related]
13. Surface Finish Analysis in Single Point Incremental Sheet Forming of Rib-Stiffened 2024-T3 and 7075-T6 Alclad Aluminium Alloy Panels. Trzepieciński T; Kubit A; Dzierwa A; Krasowski B; Jurczak W Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33801612 [TBL] [Abstract][Full Text] [Related]
14. Improving Prediction of Springback in Sheet Metal Forming Using Multilayer Perceptron-Based Genetic Algorithm. Trzepieciński T; Lemu HG Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32674296 [TBL] [Abstract][Full Text] [Related]
15. Surface Roughness Evaluation in Thin EN AW-6086-T6 Alloy Plates after Face Milling Process with Different Strategies. Chuchala D; Dobrzynski M; Pimenov DY; Orlowski KA; Krolczyk G; Giasin K Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34199651 [TBL] [Abstract][Full Text] [Related]
16. Frictional Characteristics of Deep-Drawing Quality Steel Sheets in the Flat Die Strip Drawing Test. Szewczyk M; Szwajka K; Trzepieciński T Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35955170 [TBL] [Abstract][Full Text] [Related]
17. A comparison of the lubrication behavior of whey protein model foods using tribology in linear and elliptical movement. Campbell CL; Foegeding EA; van de Velde F J Texture Stud; 2017 Aug; 48(4):335-341. PubMed ID: 28556911 [TBL] [Abstract][Full Text] [Related]
18. Experimental Investigation on the Formability of Al-Mg Alloy 5052 Sheet by Tensile and Cupping Test. He H; Yang T; Ren Y; Peng Y; Xue S; Zheng L Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556753 [TBL] [Abstract][Full Text] [Related]
19. Research on the Influence of the AW 5754 Aluminum Alloy State Condition and Sheet Arrangements with AW 6082 Aluminum Alloy on the Forming Process and Strength of the ClinchRivet Joints. Mucha J; Kaščák Ľ; Witkowski W Materials (Basel); 2021 May; 14(11):. PubMed ID: 34072850 [TBL] [Abstract][Full Text] [Related]
20. Influence of Oil Viscosity on the Tribological Behavior of a Laser-Textured Ti6Al4V Alloy. Conradi M; Kocijan A; Podgornik B Materials (Basel); 2023 Oct; 16(19):. PubMed ID: 37834752 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]