BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37570002)

  • 41. Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis.
    Drake T; Ji P; Lin W
    Acc Chem Res; 2018 Sep; 51(9):2129-2138. PubMed ID: 30129753
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Peri- and enantioselectivity of thermal, scandium-, and [pybox/scandium]-catalyzed Diels-Alder and hetero-Diels-Alder reactions of methyl (E)-2-oxo-4-aryl-butenoates with cyclopentadiene.
    Desimoni G; Faita G; Toscanini M; Boiocchi M
    Chemistry; 2007; 13(34):9478-85. PubMed ID: 17854103
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Theoretical elucidation of the origins of substituent and strain effects on the rates of Diels-Alder reactions of 1,2,4,5-tetrazines.
    Liu F; Liang Y; Houk KN
    J Am Chem Soc; 2014 Aug; 136(32):11483-93. PubMed ID: 25041719
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Counterions of BINAP-Pt(II) and -Pd(II) complexes: novel catalysts for highly enantioselective Diels-Alder reaction.
    Ghosh AK; Matsuda H
    Org Lett; 1999 Dec; 1(13):2157-9. PubMed ID: 10836069
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Construction of 3-Fold-Interpenetrated Three-Dimensional Metal-Organic Frameworks of Nickel(II) for Highly Efficient Capture and Conversion of Carbon Dioxide.
    Ugale B; Dhankhar SS; Nagaraja CM
    Inorg Chem; 2016 Oct; 55(19):9757-9766. PubMed ID: 27649622
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Density functional theory determination of an axial gateway to explain the rate and endo selectivity enhancement of Diels-Alder reactions by bis(oxazoline)-Cu(II).
    DeChancie J; Acevedo O; Evanseck JD
    J Am Chem Soc; 2004 May; 126(19):6043-7. PubMed ID: 15137769
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metalloporphyrin-Based Hypercrosslinked Polymers Catalyze Hetero-Diels-Alder Reactions of Unactivated Aldehydes with Simple Dienes: A Fascinating Strategy for the Construction of Heterogeneous Catalysts.
    Dou Z; Xu L; Zhi Y; Zhang Y; Xia H; Mu Y; Liu X
    Chemistry; 2016 Jul; 22(29):9919-22. PubMed ID: 27147500
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis of Robust MOFs@COFs Porous Hybrid Materials via an Aza-Diels-Alder Reaction: Towards High-Performance Supercapacitor Materials.
    Peng H; Raya J; Richard F; Baaziz W; Ersen O; Ciesielski A; Samorì P
    Angew Chem Int Ed Engl; 2020 Oct; 59(44):19602-19609. PubMed ID: 32634276
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Investigation of Lewis acid-catalyzed asymmetric aza-Diels-Alder reactions of 2H-azirines.
    Timén AS; Somfai P
    J Org Chem; 2003 Dec; 68(26):9958-63. PubMed ID: 14682688
    [TBL] [Abstract][Full Text] [Related]  

  • 50. DFT investigation of solvent, substituent, and catalysis effects on the intramolecular Diels-Alder reaction.
    Gara R; Zouaghi MO; ALshandoudi LMH; Arfaoui Y
    J Mol Model; 2021 Apr; 27(5):125. PubMed ID: 33829417
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanistic elucidation of the tandem Diels-Alder/(3 + 2) cycloadditions in the design and syntheses of heterosteroids.
    Donkor B; Umar AR; Opoku E
    J Mol Model; 2022 Feb; 28(3):70. PubMed ID: 35220485
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Catalytic and enantioselective aza-ene and hetero-Diels-Alder reactions of alkenes and dienes with azodicarboxylates.
    Aburel PS; Zhuang W; Hazell RG; Jørgensen KA
    Org Biomol Chem; 2005 Jun; 3(12):2344-9. PubMed ID: 16010370
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Efficient Cycloaddition of CO
    Tian XR; Shi Y; Hou SL; Ma Y; Zhao B
    Inorg Chem; 2021 Oct; 60(20):15383-15389. PubMed ID: 34590842
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intrinsic-Unsaturation-Enriched Biporous and Chemorobust Cu(II) Framework for Efficient Catalytic CO
    Seal N; Neogi S
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55123-55135. PubMed ID: 34766762
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of Lewis acid catalysts on Diels-Alder and hetero-Diels-Alder cycloadditions sharing a common transition state.
    Celebi-Olçüm N; Ess DH; Aviyente V; Houk KN
    J Org Chem; 2008 Oct; 73(19):7472-80. PubMed ID: 18781801
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gallium(III) triflate: an efficient and a sustainable Lewis acid catalyst for organic synthetic transformations.
    Prakash GK; Mathew T; Olah GA
    Acc Chem Res; 2012 Apr; 45(4):565-77. PubMed ID: 22148160
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of Lewis Acid Catalysis on the Diels-Alder Reaction between Methyl (Z)-(S)-4,5-(2,2-Propylidenedioxy)pent-2-enoate and Cyclopentadiene. A Theoretical Study.
    Sbai A; Branchadell V; Ortuño RM; Oliva A
    J Org Chem; 1997 May; 62(10):3049-3054. PubMed ID: 11671684
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Variation in Catalytic Efficacies of a 2D pH-Stable MOF by Altering Activation Methods.
    Behera J; Pal A; Sahoo R; Das MC
    Chemistry; 2024 Jun; 30(34):e202400375. PubMed ID: 38622985
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Cr(salen)-based metal-organic framework as a versatile catalyst for efficient asymmetric transformations.
    Xia Q; Liu Y; Li Z; Gong W; Cui Y
    Chem Commun (Camb); 2016 Nov; 52(89):13167-13170. PubMed ID: 27768145
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chiral CO(2)-Synthons via Catalytic Asymmetric Hetero-Diels-Alder Reactions of Ketomalonate and Dienes.
    Yao S; Roberson M; Reichel F; Hazell RG; Jørgensen KA
    J Org Chem; 1999 Sep; 64(18):6677-6687. PubMed ID: 11674671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.