These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 37570064)
1. High-Pressure Synthesis and the Enhancement of the Superconducting Properties of FeSe Azam M; Manasa M; Zajarniuk T; Diduszko R; Cetner T; Morawski A; Więckowski J; Wiśniewski A; Singh SJ Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570064 [TBL] [Abstract][Full Text] [Related]
2. Cometal Addition Effect on Superconducting Properties and Granular Behaviours of Polycrystalline FeSe Manasa M; Azam M; Zajarniuk T; Diduszko R; Cetner T; Morawski A; Wiśniewski A; Singh SJ Materials (Basel); 2023 Apr; 16(7):. PubMed ID: 37049186 [TBL] [Abstract][Full Text] [Related]
3. Effective Magnetic Field Dependence of the Flux Pinning Energy in FeSe Khan MR; Leo A; Nigro A; Galluzzi A; Polichetti M; Braccini V; Cialone M; Scuderi M; Grimaldi G Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576513 [TBL] [Abstract][Full Text] [Related]
4. Pressure Dependence of Superconducting Properties, Pinning Mechanism, and Crystal Structure of the Fe Murugesan K; Lingannan G; Ishigaki K; Uwatoko Y; Sekine C; Kawamura Y; JunIchi H; Joseph B; Vajeeston P; Maheswari PK; Awana VPS; Sonachalam A ACS Omega; 2021 Nov; 6(45):30419-30431. PubMed ID: 34805672 [TBL] [Abstract][Full Text] [Related]
5. Growth of High-Quality Superconducting FeSe Mei C; Lin Z; Zhang R; Xu C; Huang H; Dong Y; Meng M; Gao Y; Zhang X; Zhang Q; Gu L; Yang H; Tian H; Li J; Lu Y; Zhang G; Zhao Y ACS Appl Mater Interfaces; 2020 Mar; 12(10):12238-12245. PubMed ID: 32052958 [TBL] [Abstract][Full Text] [Related]
6. Critical Role Played by Interface Engineering in Weakening Thickness Dependence of Superconducting and Structural Properties of FeSe Song J; Xu Z; Xiong X; Yuan W; Dong C; Sun Q; Tang M; Chen W; Tian H; Li J; Ma Y ACS Appl Mater Interfaces; 2023 May; 15(21):26215-26224. PubMed ID: 37212392 [TBL] [Abstract][Full Text] [Related]
7. Low-Temperature Charging Dynamics of the Ionic Liquid and Its Gating Effect on FeSe Zhang C; Zhao W; Bi S; Rouleau CM; Fowlkes JD; Boldman WL; Gu G; Li Q; Feng G; Rack PD ACS Appl Mater Interfaces; 2019 May; 11(19):17979-17986. PubMed ID: 31021595 [TBL] [Abstract][Full Text] [Related]
9. Magnetic (CoFe2O4)0.1(CeO2)0.9 nanocomposite as effective pinning centers in FeSe0.1Te0.9 thin films. Huang J; Chen L; Jian J; Tyler K; Li L; Wang H; Wang H J Phys Condens Matter; 2016 Jan; 28(2):025702. PubMed ID: 26654936 [TBL] [Abstract][Full Text] [Related]
10. Unusual effects of Be doping in the iron-based superconductor FeSe. Kim JS; VanGennep D; Hamlin JJ; Wang X; Sefat AS; Stewart GR J Phys Condens Matter; 2018 Nov; 30(44):445701. PubMed ID: 30247145 [TBL] [Abstract][Full Text] [Related]
11. High current superconductivity in FeSe0.5Te0.5-coated conductors at 30 tesla. Si W; Han SJ; Shi X; Ehrlich SN; Jaroszynski J; Goyal A; Li Q Nat Commun; 2013; 4():1347. PubMed ID: 23299897 [TBL] [Abstract][Full Text] [Related]
12. Coexistence of magnetism and superconductivity in the iron-based compound Cs0.8(FeSe0.98)2. Shermadini Z; Krzton-Maziopa A; Bendele M; Khasanov R; Luetkens H; Conder K; Pomjakushina E; Weyeneth S; Pomjakushin V; Bossen O; Amato A Phys Rev Lett; 2011 Mar; 106(11):117602. PubMed ID: 21469895 [TBL] [Abstract][Full Text] [Related]
13. Structural and optical investigations of Fe1.03Se0.5Te0.5 under high pressure. Malavi PS; Karmakar S; Patel NN; Bhatt H; Sharma SM J Phys Condens Matter; 2014 Mar; 26(12):125701. PubMed ID: 24594794 [TBL] [Abstract][Full Text] [Related]
14. A Mössbauer effect study of single crystals of the non-superconducting parent compound Fe1.09Te and the superconductor FeSe0.4Te0.6. Stadnik ZM; Wang P; Zukrowski J; Noji T; Koike Y J Phys Condens Matter; 2013 Oct; 25(41):416008. PubMed ID: 24061219 [TBL] [Abstract][Full Text] [Related]
15. The Performance of the Two-Seeded GdBCO Superconductor Bulk with the Buffer by the Modified TSMG Method. Zhang Y; Li C; Lou Z; Zhang P; Zhang Y; Shen S; Ruan G; Zhang J Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241611 [TBL] [Abstract][Full Text] [Related]
16. A precursor mechanism triggering the second magnetization peak phenomenon in superconducting materials. Polichetti M; Galluzzi A; Buchkov K; Tomov V; Nazarova E; Leo A; Grimaldi G; Pace S Sci Rep; 2021 Mar; 11(1):7247. PubMed ID: 33790359 [TBL] [Abstract][Full Text] [Related]
17. A route for a strong increase of critical current in nanostrained iron-based superconductors. Ozaki T; Wu L; Zhang C; Jaroszynski J; Si W; Zhou J; Zhu Y; Li Q Nat Commun; 2016 Oct; 7():13036. PubMed ID: 27708268 [TBL] [Abstract][Full Text] [Related]
18. Anomalous Superconducting Proximity Effect in Bi Zhang Y; Zhao WM; Zhang C; Wang P; Wang T; Li SC; Xing Z; Xing D Adv Mater; 2022 Feb; 34(6):e2107799. PubMed ID: 34818689 [TBL] [Abstract][Full Text] [Related]
19. The Influence of Preparation Temperature on the Different Facets of Bulk MgB Zhang P; Zhang Y; Li C; Zhang Y; Shen S; Ruan G; Zhang J; Noudem JG Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241612 [TBL] [Abstract][Full Text] [Related]
20. Origin of the emergence of higher T Seo S; Kang JH; Oh MJ; Jeong IS; Jiang J; Gu G; Lee JW; Lee J; Noh H; Liu M; Gao P; Hellstrom EE; Lee JH; Jo YJ; Eom CB; Lee S Sci Rep; 2017 Aug; 7(1):9994. PubMed ID: 28855591 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]