These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 37570069)
1. On the Degree of Plastic Strain during Laser Shock Peening of Ti-6Al-4V. Mironov S; Ozerov M; Kalinenko A; Zuiko I; Stepanov N; Plekhov O; Salishchev G; Semiatin L; Zherebtsov S Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570069 [TBL] [Abstract][Full Text] [Related]
2. Effects of Laser Shock Peening on Microstructure and Properties of Ti-6Al-4V Titanium Alloy Fabricated via Selective Laser Melting. Lan L; Xin R; Jin X; Gao S; He B; Rong Y; Min N Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32717788 [TBL] [Abstract][Full Text] [Related]
3. Numerical Prediction of the Effect of Laser Shock Peening on Residual Stress and Fatigue Life of Ti-6Al-4V Titanium Alloy. Ouyang P; Luo X; Dong Z; Zhang S Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013641 [TBL] [Abstract][Full Text] [Related]
4. Biological and mechanical response of laser shock peening orthopaedic titanium alloy (Ti-6Al-7Nb). Shen X; Shukla P; Nayak S; Gopal V; Subramanian P; Sarah Benjamin A; Kalainathan S Proc Inst Mech Eng H; 2022 Aug; 236(8):1169-1187. PubMed ID: 35735136 [TBL] [Abstract][Full Text] [Related]
5. Effect of Synchronized Laser Shock Peening on Decreasing Defects and Improving Microstructures of Ti-6Al-4V Laser Joint. Zhang L; Ouyang W; Wu D; Sheng L; Guo C; Ma L; Chen Z; Zhu Z; Du Y; Cui P; Hou Z; Zhang W Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444884 [TBL] [Abstract][Full Text] [Related]
6. Laser Shock Peening of SiCp/2009Al Composites: Microstructural Evolution, Residual Stress and Fatigue Behavior. Sun R; Cao Z; Zhang Y; Zhang H; Yu Y; Che Z; Wu J; Zou S; Guo W Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33652572 [TBL] [Abstract][Full Text] [Related]
7. Investigating the Dynamic Mechanical Properties and Strengthening Mechanisms of Ti-6Al-4V Alloy by Using the Ultrasonic Surface Rolling Process. Zha X; Yuan Z; Qin H; Xi L; Guo Y; Xu Z; Dai X; Jiang F Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541536 [TBL] [Abstract][Full Text] [Related]
8. On the Microstructure, Residual Stress and Fatigue Performance of Laser Metal Deposited TC17 Alloy Subjected to Laser Shock Peening. An Z; He W; Zhou X; Zhou L; Nie X Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143811 [TBL] [Abstract][Full Text] [Related]
9. Stress-Strain Curves and Modified Material Constitutive Model for Ti-6Al-4V over the Wide Ranges of Strain Rate and Temperature. Hou X; Liu Z; Wang B; Lv W; Liang X; Hua Y Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29865223 [TBL] [Abstract][Full Text] [Related]
10. Biocompatibility of new low-cost (α + β)-type Ti-Mo-Fe alloys for long-term implantation. Abdelrhman Y; Gepreel MA; Kobayashi S; Okano S; Okamoto T Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():552-562. PubMed ID: 30889729 [TBL] [Abstract][Full Text] [Related]
11. An initial study of diffusion bonds between superplastic Ti-6Al-4V for implant dentistry applications. Elias KL; Daehn GS; Brantley WA; McGlumphy EA J Prosthet Dent; 2007 Jun; 97(6):357-65. PubMed ID: 17618918 [TBL] [Abstract][Full Text] [Related]
12. Effect of Multidirectional Isothermal Forging on Microstructure and Mechanical Properties in Ti-6Al-4V Alloy. Xu Z; Yang W; Fan J; Wu T; Gao Z Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591490 [TBL] [Abstract][Full Text] [Related]
13. Fatigue Life Enhancement of Titanium Alloy by the Development of Nano/Micron Surface Layer Using Laser Peening. Rajan SS; Swaroop S; Manivasagam G; Rao MN J Nanosci Nanotechnol; 2019 Nov; 19(11):7064-7073. PubMed ID: 31039859 [TBL] [Abstract][Full Text] [Related]
14. Formation of Structure and Properties of Two-Phase Ti-6Al-4V Alloy during Cold Metal Transfer Additive Deposition with Interpass Forging. Shchitsyn Y; Kartashev M; Krivonosova E; Olshanskaya T; Trushnikov D Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442935 [TBL] [Abstract][Full Text] [Related]
15. Laser Peening Process and Its Impact on Materials Properties in Comparison with Shot Peening and Ultrasonic Impact Peening. Gujba AK; Medraj M Materials (Basel); 2014 Dec; 7(12):7925-7974. PubMed ID: 28788284 [TBL] [Abstract][Full Text] [Related]
16. Investigation of Strain Fatigue Behavior for Inconel 625 with Laser Shock Peening. Sun Y; Wu H; Du H; Yao Z Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295330 [TBL] [Abstract][Full Text] [Related]
17. The effect of build orientation on the microstructure and properties of selective laser melting Ti-6Al-4V for removable partial denture clasps. Xie W; Zheng M; Wang J; Li X J Prosthet Dent; 2020 Jan; 123(1):163-172. PubMed ID: 30982620 [TBL] [Abstract][Full Text] [Related]
18. Residual Lattice Strain and Phase Distribution in Ti-6Al-4V Produced by Electron Beam Melting. Maimaitiyili T; Woracek R; Neikter M; Boin M; Wimpory RC; Pederson R; Strobl M; Drakopoulos M; Schäfer N; Bjerkén C Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30813435 [TBL] [Abstract][Full Text] [Related]
19. Effect of Oxygen Variation on High Cycle Fatigue Behavior of Ti-6Al-4V Titanium Alloy. Tang L; Fan J; Kou H; Tang B; Li J Materials (Basel); 2020 Sep; 13(17):. PubMed ID: 32882907 [TBL] [Abstract][Full Text] [Related]
20. Microstructural Evolution and Surface Mechanical Properties of the Titanium Alloy Ti-13Nb-13Zr Subjected to Laser Shock Processing. Wu J; Lin X; Qiao H; Zhao J; Ding W; Zhu R Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614576 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]