These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 37570085)
1. Explainable Artificial Intelligence to Investigate the Contribution of Design Variables to the Static Characteristics of Bistable Composite Laminates. Saberi S; Nasiri H; Ghorbani O; Friswell MI; Castro SGP Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570085 [TBL] [Abstract][Full Text] [Related]
2. Interpretation of ensemble learning to predict water quality using explainable artificial intelligence. Park J; Lee WH; Kim KT; Park CY; Lee S; Heo TY Sci Total Environ; 2022 Aug; 832():155070. PubMed ID: 35398119 [TBL] [Abstract][Full Text] [Related]
4. Explainable artificial intelligence model for identifying COVID-19 gene biomarkers. Yagin FH; Cicek İB; Alkhateeb A; Yagin B; Colak C; Azzeh M; Akbulut S Comput Biol Med; 2023 Mar; 154():106619. PubMed ID: 36738712 [TBL] [Abstract][Full Text] [Related]
5. Manifold-based Shapley explanations for high dimensional correlated features. Hu X; Zhu M; Feng Z; Stanković L Neural Netw; 2024 Dec; 180():106634. PubMed ID: 39191125 [TBL] [Abstract][Full Text] [Related]
6. Explainable artificial intelligence (XAI) for interpreting the contributing factors feed into the wildfire susceptibility prediction model. Abdollahi A; Pradhan B Sci Total Environ; 2023 Jun; 879():163004. PubMed ID: 36965733 [TBL] [Abstract][Full Text] [Related]
7. Using Explainable AI to Cross-Validate Socio-economic Disparities Among Covid-19 Patient Mortality. Shi L; Rahman R; Melamed E; Gwizdka J; Rousseau JF; Ding Y AMIA Jt Summits Transl Sci Proc; 2023; 2023():477-486. PubMed ID: 37350891 [TBL] [Abstract][Full Text] [Related]
8. Explainable artificial intelligence for the interpretation of ensemble learning performance in algal bloom estimation. Park J; Seong B; Park Y; Lee WH; Heo TY Water Environ Res; 2024 Oct; 96(10):e11140. PubMed ID: 39382139 [TBL] [Abstract][Full Text] [Related]
9. Explainability and Transparency of Classifiers for Air-Handling Unit Faults Using Explainable Artificial Intelligence (XAI). Meas M; Machlev R; Kose A; Tepljakov A; Loo L; Levron Y; Petlenkov E; Belikov J Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080795 [TBL] [Abstract][Full Text] [Related]
10. CVD22: Explainable artificial intelligence determination of the relationship of troponin to D-Dimer, mortality, and CK-MB in COVID-19 patients. Kırboğa KK; Küçüksille EU; Naldan ME; Işık M; Gülcü O; Aksakal E Comput Methods Programs Biomed; 2023 May; 233():107492. PubMed ID: 36965300 [TBL] [Abstract][Full Text] [Related]
11. Development and application of explainable artificial intelligence using machine learning classification for long-term facial nerve function after vestibular schwannoma surgery. Przepiorka L; Kujawski S; Wójtowicz K; Maj E; Marchel A; Kunert P J Neurooncol; 2024 Oct; ():. PubMed ID: 39392590 [TBL] [Abstract][Full Text] [Related]
12. Cancer Metastasis Prediction and Genomic Biomarker Identification through Machine Learning and eXplainable Artificial Intelligence in Breast Cancer Research. Yagin B; Yagin FH; Colak C; Inceoglu F; Kadry S; Kim J Diagnostics (Basel); 2023 Oct; 13(21):. PubMed ID: 37958210 [TBL] [Abstract][Full Text] [Related]
13. From local counterfactuals to global feature importance: efficient, robust, and model-agnostic explanations for brain connectivity networks. Alfeo AL; Zippo AG; Catrambone V; Cimino MGCA; Toschi N; Valenza G Comput Methods Programs Biomed; 2023 Jun; 236():107550. PubMed ID: 37086584 [TBL] [Abstract][Full Text] [Related]
14. Fall risk classification with posturographic parameters in community-dwelling older adults: a machine learning and explainable artificial intelligence approach. Liang HW; Ameri R; Band S; Chen HS; Ho SY; Zaidan B; Chang KC; Chang A J Neuroeng Rehabil; 2024 Jan; 21(1):15. PubMed ID: 38287415 [TBL] [Abstract][Full Text] [Related]
15. Spatio-temporal feature attribution of European summer wildfires with Explainable Artificial Intelligence (XAI). Li H; Vulova S; Rocha AD; Kleinschmit B Sci Total Environ; 2024 Mar; 916():170330. PubMed ID: 38278254 [TBL] [Abstract][Full Text] [Related]
16. Modeling of energy consumption factors for an industrial cement vertical roller mill by SHAP-XGBoost: a "conscious lab" approach. Fatahi R; Nasiri H; Dadfar E; Chehreh Chelgani S Sci Rep; 2022 May; 12(1):7543. PubMed ID: 35534588 [TBL] [Abstract][Full Text] [Related]
17. Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model. Zhang J; Ma X; Zhang J; Sun D; Zhou X; Mi C; Wen H J Environ Manage; 2023 Apr; 332():117357. PubMed ID: 36731409 [TBL] [Abstract][Full Text] [Related]
18. SHAP and LIME: An Evaluation of Discriminative Power in Credit Risk. Gramegna A; Giudici P Front Artif Intell; 2021; 4():752558. PubMed ID: 34604738 [TBL] [Abstract][Full Text] [Related]
19. Exploring metabolic anomalies in COVID-19 and post-COVID-19: a machine learning approach with explainable artificial intelligence. Oropeza-Valdez JJ; Padron-Manrique C; Vázquez-Jiménez A; Soberon X; Resendis-Antonio O Front Mol Biosci; 2024; 11():1429281. PubMed ID: 39314212 [TBL] [Abstract][Full Text] [Related]
20. Factors Predicting Surgical Effort Using Explainable Artificial Intelligence in Advanced Stage Epithelial Ovarian Cancer. Laios A; Kalampokis E; Johnson R; Munot S; Thangavelu A; Hutson R; Broadhead T; Theophilou G; Leach C; Nugent D; De Jong D Cancers (Basel); 2022 Jul; 14(14):. PubMed ID: 35884506 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]