These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37570111)

  • 1. Parametric Study of Planetary Milling to Produce Cu-CuO Powders for Pore Formation by Oxide Reduction.
    Tse Lop Kun JE; Rutherford AP; Learn RS; Atwater MA
    Materials (Basel); 2023 Aug; 16(15):. PubMed ID: 37570111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Producing Metal Powder from Machining Chips Using Ball Milling Process: A Review.
    Wei LK; Abd Rahim SZ; Al Bakri Abdullah MM; Yin ATM; Ghazali MF; Omar MF; Nemeș O; Sandu AV; Vizureanu P; Abdellah AE
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Bonding Treatment and Ball Milling on W-20 wt.% Cu Composite Powder for Injection Molding.
    Ouyang M; Wang C; Zhang H; Liu X
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33920304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Dispersed Cu Produced by Mechanical Stress-Activated Redox Reaction to Establish Galvanic Corrosion in Fe Implant.
    He C; Zeng X; Yang L; Zhong S; Peng S; Yang W; Shuai C
    ACS Biomater Sci Eng; 2023 Jan; 9(1):153-164. PubMed ID: 36571764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influencing the Size and Shape of High-Energy Ball Milled Particle Reinforced Aluminum Alloy Powder.
    Trautmann M; Ahmad H; Wagner G
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of Cu-CNT nanocomposite powder by ball milling.
    Kim BJ; Oh SY; Yun HS; Ki JH; Kim CJ; Baik S; Lim BS
    J Nanosci Nanotechnol; 2009 Dec; 9(12):7393-7. PubMed ID: 19908795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of process control agent on the porous structure and mechanical properties of a biomedical Ti-Sn-Nb alloy produced by powder metallurgy.
    Nouri A; Hodgson PD; Wen CE
    Acta Biomater; 2010 Apr; 6(4):1630-9. PubMed ID: 19815096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructural Characterization of Calcite-Based Powder Materials Prepared by Planetary Ball Milling.
    Tsai WT
    Materials (Basel); 2013 Aug; 6(8):3361-3372. PubMed ID: 28811439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on copper-yttria nanocomposites: high-energy ball milling versus chemical reduction method.
    Joshi PB; Rehani B; Naik P; Patel S; Khanna PK
    J Nanosci Nanotechnol; 2012 Mar; 12(3):2591-7. PubMed ID: 22755095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructural characterization of mechanically activated ZnO powders.
    Srećković T; Bernik S; Ceh M; Vojisavljević K
    J Microsc; 2008 Dec; 232(3):639-42. PubMed ID: 19094053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Composite Powder Feedstock from Powder Bed Fusion Additive Manufacturing Perspective.
    Fereiduni E; Ghasemi A; Elbestawi M
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31703412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review on Generation and Characterization of Copper Particles and Copper Composites Prepared by Mechanical Milling on a Lab-Scale.
    Sandoval SS; Silva N
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Ball-Milling Synthesis of CuO/Biochar Nanocomposites for Efficient Removal of Reactive Red 120.
    Wei X; Wang X; Gao B; Zou W; Dong L
    ACS Omega; 2020 Mar; 5(11):5748-5755. PubMed ID: 32226853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and Mechanical Properties of the New Ti30Ta20Nb Biomedical Alloy.
    Dercz G; Matu A I; Zubko M
    J Nanosci Nanotechnol; 2019 May; 19(5):2556-2566. PubMed ID: 30501752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery of high-grade copper from metal-rich particles of waste printed circuit boards by ball milling and sieving.
    Liu F; Chen W; Wan B; Chen H; Ling Z; Chen Z; Fu Z
    Environ Technol; 2022 Jan; 43(4):514-523. PubMed ID: 32660381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Milling Time, Zirconia Addition, and Storage Environment on the Radiopacity Performance of Mechanically Milled Bi
    Chen MS; Lin HN; Cheng YC; Fang A; Chen CY; Lee PY; Lin CK
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31991563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grain size and shape fractal characteristics of gangue in the process of 'jaw breaking-ball milling'.
    Gu W; Zhu L; Liu Z; He Z
    PLoS One; 2023; 18(2):e0281513. PubMed ID: 36800384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Powder Milling and Annealing Parameters on the Formation of Cubic Li
    Oleszak D; Pawlyta M; Pikula T
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amelioration of Hydrogen Uptake and Release Features of Magnesium Adding a Polymer Polyvinylidene Fluoride via Milling in Hydrogen in a Planetary Ball Mill.
    Kwak YJ; Song MY
    J Nanosci Nanotechnol; 2020 Nov; 20(11):7105-7113. PubMed ID: 32604566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of ball milling on the processing of bone substitutes with calcium phosphate powders.
    Bignon A; Chevalier J; Fantozzi G
    J Biomed Mater Res; 2002; 63(5):619-26. PubMed ID: 12209909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.