These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 3757030)

  • 1. Expression of wild-type and mutant forms of influenza hemagglutinin: the role of folding in intracellular transport.
    Gething MJ; McCammon K; Sambrook J
    Cell; 1986 Sep; 46(6):939-50. PubMed ID: 3757030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folding, trimerization, and transport are sequential events in the biogenesis of influenza virus hemagglutinin.
    Copeland CS; Zimmer KP; Wagner KR; Healey GA; Mellman I; Helenius A
    Cell; 1988 Apr; 53(2):197-209. PubMed ID: 3359486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monoclonal antibodies localize events in the folding, assembly, and intracellular transport of the influenza virus hemagglutinin glycoprotein.
    Yewdell JW; Yellen A; Bächi T
    Cell; 1988 Mar; 52(6):843-52. PubMed ID: 2450677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Posttranslational translocation of influenza virus hemagglutinin across microsomal membranes.
    Chao CC; Bird P; Gething MJ; Sambrook J
    Mol Cell Biol; 1987 Oct; 7(10):3842-5. PubMed ID: 3683400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly of influenza hemagglutinin trimers and its role in intracellular transport.
    Copeland CS; Doms RW; Bolzau EM; Webster RG; Helenius A
    J Cell Biol; 1986 Oct; 103(4):1179-91. PubMed ID: 2429970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutations blocking the transport of the influenza virus hemagglutinin between the rough endoplasmic reticulum and the Golgi apparatus.
    Schuy W; Will C; Kuroda K; Scholtissek C; Garten W; Klenk HD
    EMBO J; 1986 Nov; 5(11):2831-6. PubMed ID: 3024963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retention of secretory proteins in an intermediate compartment and disappearance of the Golgi complex in an END4 mutant of Chinese hamster ovary cells.
    Kao CY; Draper RK
    J Cell Biol; 1992 May; 117(4):701-15. PubMed ID: 1577851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ion channel activity of the influenza virus M2 protein affects transport through the Golgi apparatus.
    Sakaguchi T; Leser GP; Lamb RA
    J Cell Biol; 1996 May; 133(4):733-47. PubMed ID: 8666660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and assembly of hemagglutinin mutants of fowl plague virus with impaired surface transport.
    Garten W; Will C; Buckard K; Kuroda K; Ortmann D; Munk K; Scholtissek C; Schnittler H; Drenckhahn D; Klenk HD
    J Virol; 1992 Mar; 66(3):1495-505. PubMed ID: 1738202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycosylation requirements for intracellular transport and function of the hemagglutinin of influenza virus.
    Gallagher PJ; Henneberry JM; Sambrook JF; Gething MJ
    J Virol; 1992 Dec; 66(12):7136-45. PubMed ID: 1331514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A single amino acid deletion at the amino terminus of influenza virus hemagglutinin causes malfolding and blocks exocytosis of the molecule in mammalian cells.
    Chao CC
    J Biol Chem; 1992 Feb; 267(4):2142-8. PubMed ID: 1733923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding and oligomerization of influenza hemagglutinin in the ER and the intermediate compartment.
    Tatu U; Hammond C; Helenius A
    EMBO J; 1995 Apr; 14(7):1340-8. PubMed ID: 7729412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations in the cytoplasmic domain of the influenza virus hemagglutinin affect different stages of intracellular transport.
    Doyle C; Roth MG; Sambrook J; Gething MJ
    J Cell Biol; 1985 Mar; 100(3):704-14. PubMed ID: 3972890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Posttranslational oligomerization and cooperative acid activation of mixed influenza hemagglutinin trimers.
    Boulay F; Doms RW; Webster RG; Helenius A
    J Cell Biol; 1988 Mar; 106(3):629-39. PubMed ID: 3279048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of individual oligosaccharide chains in antigenic properties, intracellular transport, and biological activities of influenza C virus hemagglutinin-esterase protein.
    Sugahara K; Hongo S; Sugawara K; Li ZN; Tsuchiya E; Muraki Y; Matsuzaki Y; Nakamura K
    Virology; 2001 Jun; 285(1):153-64. PubMed ID: 11414815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein folding and intracellular transport: studies on influenza virus haemagglutinin.
    Gething MJ; Sambrook J
    Biochem Soc Symp; 1989; 55():155-66. PubMed ID: 2619766
    [No Abstract]   [Full Text] [Related]  

  • 17. Role of conserved glycosylation sites in maturation and transport of influenza A virus hemagglutinin.
    Roberts PC; Garten W; Klenk HD
    J Virol; 1993 Jun; 67(6):3048-60. PubMed ID: 8497042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of foreign transmembrane domains on the biosynthesis of the influenza virus hemagglutinin.
    Lazarovits J; Shia SP; Ktistakis N; Lee MS; Bird C; Roth MG
    J Biol Chem; 1990 Mar; 265(8):4760-7. PubMed ID: 2307684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular transport of soluble and membrane-bound glycoproteins: folding, assembly and secretion of anchor-free influenza hemagglutinin.
    Singh I; Doms RW; Wagner KR; Helenius A
    EMBO J; 1990 Mar; 9(3):631-9. PubMed ID: 2178922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trimer formation determines the rate of influenza virus haemagglutinin transport in the early stages of secretion in Xenopus oocytes.
    Ceriotti A; Colman A
    J Cell Biol; 1990 Aug; 111(2):409-20. PubMed ID: 2380242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.