BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 37570489)

  • 1. Comparing Ultralong Carbon Nanotube Growth from Methane over Mono- and Bi-Metallic Iron Chloride Catalysts.
    Yick T; Gangoli VS; Orbaek White A
    Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single walled carbon nanotube growth and chirality dependence on catalyst composition.
    Orbaek AW; Owens AC; Crouse CC; Pint CL; Hauge RH; Barron AR
    Nanoscale; 2013 Oct; 5(20):9848-59. PubMed ID: 23974219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of the Fe-Co interaction on the growth of multiwall carbon nanotubes.
    Li Z; Dervishi E; Xu Y; Ma X; Saini V; Biris AS; Little R; Biris AR; Lupu D
    J Chem Phys; 2008 Aug; 129(7):074712. PubMed ID: 19044797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth, new growth, and amplification of carbon nanotubes as a function of catalyst composition.
    Crouse CA; Maruyama B; Colorado R; Back T; Barron AR
    J Am Chem Soc; 2008 Jun; 130(25):7946-54. PubMed ID: 18507464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of Fe/MgO catalyst support precursors for the chemical vapour deposition growth of carbon nanotubes.
    Palizdar M; Ahgababazadeh R; Mirhabibi A; Brydson R; Pilehvari S
    J Nanosci Nanotechnol; 2011 Jun; 11(6):5345-51. PubMed ID: 21770187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct wall number control of carbon nanotube forests from engineered iron catalysts.
    Chiang WH; Futaba DN; Yumura M; Hata K
    J Nanosci Nanotechnol; 2013 Apr; 13(4):2745-51. PubMed ID: 23763154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low temperature multi-catalytic growth and growth mechanism of carbon nanotubes on carbon fiber surfaces.
    Yao Z; Xia A; Wang D; Wang C
    Nanotechnology; 2023 Oct; 35(1):. PubMed ID: 37783207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Catalyst Pretreatment on Carbon Nanotube Synthesis from Methane Using Thin Stainless-Steel Foil as Catalyst by Chemical Vapor Deposition Method.
    Huynh TM; Nguyen S; Nguyen NTK; Nguyen HM; Do NUP; Nguyen DC; Nguyen LH; Nguyen CV
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33379133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Floating Bimetallic Catalysts for Growing 30 cm-Long Carbon Nanotube Arrays with High Yields and Uniformity.
    Jiang Q; Wu Y; Wang F; Zhu P; Li R; Zhao Y; Huang Y; Wu X; Zhao S; Li Y; Wang B; Gao D; Zhang R
    Adv Mater; 2024 Jun; ():e2402257. PubMed ID: 38831681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fe/Co alloys for the catalytic chemical vapor deposition synthesis of single- and double-walled carbon nanotubes (CNTs). 2. The CNT-Fe/Co-MgAl2O4 system.
    Coquay P; Flahaut E; De Grave E; Peigney A; Vandenberghe RE; Laurent C
    J Phys Chem B; 2005 Sep; 109(38):17825-30. PubMed ID: 16853285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mössbauer Study on the Conversion of Different Iron-Based Catalysts Used in Carbon Nanotube Synthesis.
    Kořenek M; Ivanova T; Svačinová V; Mašláň M
    Nanomaterials (Basel); 2023 Nov; 13(23):. PubMed ID: 38063705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates.
    Wang X; Li Q; Xie J; Jin Z; Wang J; Li Y; Jiang K; Fan S
    Nano Lett; 2009 Sep; 9(9):3137-41. PubMed ID: 19650638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation on the Formation Mechanism of Double-Layer Vertically Aligned Carbon Nanotube Arrays via Single-Step Chemical Vapour Deposition.
    Zhang S; Peng D; Xie H; Zheng Q; Zhang Y
    Nanomicro Lett; 2017; 9(1):12. PubMed ID: 30460309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gaseous product mixture from Fischer-Tropsch synthesis as an efficient carbon feedstock for low temperature CVD growth of carbon nanotube carpets.
    Almkhelfe H; Carpena-Núñez J; Back TC; Amama PB
    Nanoscale; 2016 Jul; 8(27):13476-87. PubMed ID: 27353432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth of metal-free carbon nanotubes on glass substrate with an amorphous carbon catalyst layer.
    Seo JK; Choi WS; Kim HD; Lee JH; Choi EC; Kim HJ; Hong B
    J Nanosci Nanotechnol; 2011 Dec; 11(12):11032-6. PubMed ID: 22409050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural changes in iron oxide and gold catalysts during nucleation of carbon nanotubes studied by in situ transmission electron microscopy.
    Tang DM; Liu C; Yu WJ; Zhang LL; Hou PX; Li JC; Li F; Bando Y; Golberg D; Cheng HM
    ACS Nano; 2014 Jan; 8(1):292-301. PubMed ID: 24354297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational Modification of a Metallic Substrate for CVD Growth of Carbon Nanotubes.
    Li X; Baker-Fales M; Almkhelfe H; Gaede NR; Harris TS; Amama PB
    Sci Rep; 2018 Mar; 8(1):4349. PubMed ID: 29531239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Reusable CNT-Supported Single-Atom Iron Catalyst for the Highly Efficient Synthesis of C-N Bonds.
    Ding Q; Yu Y; Huang F; Zhang L; Zheng JG; Xu M; Baell JB; Huang H
    Chemistry; 2020 Apr; 26(20):4592-4598. PubMed ID: 32053247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effectiveness and adsorption mechanism of iron-carbon nanotube composites for removing phosphate from aqueous environments.
    Adil S; Kim JO
    Chemosphere; 2023 Feb; 313():137629. PubMed ID: 36565757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. En route to controlled catalytic CVD synthesis of densely packed and vertically aligned nitrogen-doped carbon nanotube arrays.
    Boncel S; Pattinson SW; Geiser V; Shaffer MS; Koziol KK
    Beilstein J Nanotechnol; 2014; 5():219-33. PubMed ID: 24605289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.