BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 37570496)

  • 21. Insights and Heuristics for Predicting Diffusion Rates of Chemical Warfare Agents in Zirconium Metal-Organic Frameworks.
    Bukowski BC; Snurr RQ
    ACS Appl Mater Interfaces; 2022 Dec; 14(50):55608-55615. PubMed ID: 36475611
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scalable and Template-Free Aqueous Synthesis of Zirconium-Based Metal-Organic Framework Coating on Textile Fiber.
    Ma K; Islamoglu T; Chen Z; Li P; Wasson MC; Chen Y; Wang Y; Peterson GW; Xin JH; Farha OK
    J Am Chem Soc; 2019 Oct; 141(39):15626-15633. PubMed ID: 31532665
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metal-Organic Framework Gels for Adsorption and Catalytic Detoxification of Chemical Warfare Agents: A Review.
    Zhang Y; Tao CA
    Gels; 2023 Oct; 9(10):. PubMed ID: 37888388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functionalized reactive polymers for the removal of chemical warfare agents: A review.
    Snider VG; Hill CL
    J Hazard Mater; 2023 Jan; 442():130015. PubMed ID: 36166906
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis.
    Drake T; Ji P; Lin W
    Acc Chem Res; 2018 Sep; 51(9):2129-2138. PubMed ID: 30129753
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photothermally Enhanced Detoxification of Chemical Warfare Agent Simulants Using Bioinspired Core-Shell Dopamine-Melanin@Metal-Organic Frameworks and Their Fabrics.
    Yao A; Jiao X; Chen D; Li C
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):7927-7935. PubMed ID: 30688436
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fast and Sustained Degradation of Chemical Warfare Agent Simulants Using Flexible Self-Supported Metal-Organic Framework Filters.
    Liang H; Yao A; Jiao X; Li C; Chen D
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20396-20403. PubMed ID: 29806452
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unique design of superior metal-organic framework for removal of toxic chemicals in humid environment via direct functionalization of the metal nodes.
    Cha GY; Chun H; Hong DY; Kim J; Cho KH; Lee UH; Chang JS; Ryu SG; Lee HW; Kim SJ; Han B; Hwang YK
    J Hazard Mater; 2020 Nov; 398():122857. PubMed ID: 32512442
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Humidity Enhances the Solid-Phase Catalytic Ability of a Bulk MOF-808 Metal-Organic Gel toward a Chemical Warfare Agent Simulant.
    Zhou C; Li L; Qin H; Wu Q; Wang L; Lin C; Yang B; Tao CA; Zhang S
    ACS Appl Mater Interfaces; 2023 Nov; 15(47):54582-54589. PubMed ID: 37974445
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Application of gas chromatography separation based on metal-organic framework material as stationary phase].
    Tang W; Meng S; Xu M; Gu Z
    Se Pu; 2021 Jan; 39(1):57-68. PubMed ID: 34227359
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Charge Transport in Zirconium-Based Metal-Organic Frameworks.
    Kung CW; Goswami S; Hod I; Wang TC; Duan J; Farha OK; Hupp JT
    Acc Chem Res; 2020 Jun; 53(6):1187-1195. PubMed ID: 32401008
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Continuous Flow Composite Membrane Catalysts for Efficient Decomposition of Chemical Warfare Agent Simulants.
    Seo JY; Cho KY; Lee JH; Lee MW; Baek KY
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32778-32787. PubMed ID: 32589390
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Swell and Destroy: A Metal-Organic Framework-Containing Polymer Sponge That Immobilizes and Catalytically Degrades Nerve Agents.
    Kalinovskyy Y; Wright AJ; Hiscock JR; Watts TD; Williams RL; Cooper NJ; Main MJ; Holder SJ; Blight BA
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8634-8641. PubMed ID: 31990517
    [TBL] [Abstract][Full Text] [Related]  

  • 34. UiO-66-NH
    Zhang X; Sun Y; Liu Y; Zhai Z; Guo S; Peng L; Qin Y; Li C
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39976-39984. PubMed ID: 34379383
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aramid nanofibers supported metal-organic framework aerogel for protection of chemical warfare agent.
    Jiang N; Liu H; Zhao G; Li H; Yang S; Xu X; Zhuang X; Cheng B
    J Colloid Interface Sci; 2023 Jun; 640():192-198. PubMed ID: 36863176
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MOFabric: Electrospun Nanofiber Mats from PVDF/UiO-66-NH
    Lu AX; McEntee M; Browe MA; Hall MG; DeCoste JB; Peterson GW
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13632-13636. PubMed ID: 28355051
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detoxification of Chemical Warfare Agents Using a Zr
    Moon SY; Proussaloglou E; Peterson GW; DeCoste JB; Hall MG; Howarth AJ; Hupp JT; Farha OK
    Chemistry; 2016 Oct; 22(42):14864-14868. PubMed ID: 27607019
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effective, Facile, and Selective Hydrolysis of the Chemical Warfare Agent VX Using Zr6-Based Metal-Organic Frameworks.
    Moon SY; Wagner GW; Mondloch JE; Peterson GW; DeCoste JB; Hupp JT; Farha OK
    Inorg Chem; 2015 Nov; 54(22):10829-33. PubMed ID: 26505999
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fibrous Zr-MOF Nanozyme Aerogels with Macro-Nanoporous Structure for Enhanced Catalytic Hydrolysis of Organophosphate Toxins.
    Ma K; Cheung YH; Kirlikovali KO; Xie H; Idrees KB; Wang X; Islamoglu T; Xin JH; Farha OK
    Adv Mater; 2024 Mar; 36(10):e2300951. PubMed ID: 37310697
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Product Inhibition and the Catalytic Destruction of a Nerve Agent Simulant by Zirconium-Based Metal-Organic Frameworks.
    Liao Y; Sheridan T; Liu J; Farha O; Hupp J
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):30565-30575. PubMed ID: 34161064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.