These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 37570660)
21. Ten-year regional monitoring of soil-rice grain contamination by heavy metals with implications for target remediation and food safety. He M; Shen H; Li Z; Wang L; Wang F; Zhao K; Liu X; Wendroth O; Xu J Environ Pollut; 2019 Jan; 244():431-439. PubMed ID: 30359925 [TBL] [Abstract][Full Text] [Related]
22. Single-atom nanozymes: Emerging talent for sensitive detection of heavy metals. Han F; Cheng C; Zhao J; Wang H; Zhao G; Zhang Y; Zhang N; Wang Y; Zhang J; Wei Q Colloids Surf B Biointerfaces; 2024 Oct; 242():114093. PubMed ID: 39029248 [TBL] [Abstract][Full Text] [Related]
23. Analyte Detection: A Decade of Progress in the Development of Optical/Fluorescent Sensing Probes. Kaur P; Singh K Chem Rec; 2023 Jan; 23(1):e202200184. PubMed ID: 36180394 [TBL] [Abstract][Full Text] [Related]
24. Mapping of heavy metal ion sorption to cell-extracellular polymeric substance-mineral aggregates by using metal-selective fluorescent probes and confocal laser scanning microscopy. Hao L; Li J; Kappler A; Obst M Appl Environ Microbiol; 2013 Nov; 79(21):6524-34. PubMed ID: 23974141 [TBL] [Abstract][Full Text] [Related]
25. Electrochemical and Colorimetric Nanosensors for Detection of Heavy Metal Ions: A Review. Fakayode SO; Walgama C; Fernand Narcisse VE; Grant C Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005468 [TBL] [Abstract][Full Text] [Related]
26. Oral bioaccessibility of toxic metals in contaminated oysters and relationships with metal internal sequestration. Gao S; Wang WX Ecotoxicol Environ Saf; 2014 Dec; 110():261-8. PubMed ID: 25265028 [TBL] [Abstract][Full Text] [Related]
27. DNA-functionalized photonic crystal microspheres for multiplex detection of toxic metal ions. Yan Z; Tian C; Qu X; Shen W; Ye B Colloids Surf B Biointerfaces; 2017 Jun; 154():142-149. PubMed ID: 28334691 [TBL] [Abstract][Full Text] [Related]
28. Recent Advances of DNA-Templated Metal Nanoclusters for Food Safety Detection: From Synthesis, Applications, Challenges, and Beyond. Tang X; Lu M; Wang J; Man S; Peng W; Ma L J Agric Food Chem; 2024 Mar; 72(11):5542-5554. PubMed ID: 38377578 [TBL] [Abstract][Full Text] [Related]
29. Persistent organic pollutants and heavy metals in Ghanaian environment: a systematic review of food safety implications. Abdulai PM; Sam K; Onyena AP; Ezejiofor AN; Frazzoli C; Ekhator OC; Udom GJ; Frimpong CK; Nriagu J; Orisakwe OE Environ Monit Assess; 2024 Mar; 196(4):376. PubMed ID: 38492071 [TBL] [Abstract][Full Text] [Related]
30. [Synthesis and application progress of covalent organic polymers in sample preparation for food safety analysis]. Wang P; Chen Y; Hu Y; Li G Se Pu; 2021 Feb; 39(2):162-172. PubMed ID: 34227349 [TBL] [Abstract][Full Text] [Related]
31. Organic small-molecule fluorescent probe-based detection for alkali and alkaline earth metal ions in biological systems. Xu M; Xing J; Yuan B; He L; Lu L; Chen N; Cai P; Wu A; Li J J Mater Chem B; 2023 Apr; 11(15):3295-3306. PubMed ID: 36960847 [TBL] [Abstract][Full Text] [Related]
32. Toxic heavy metals: impact on the environment and human health, and treatment with conducting organic polymers, a review. Sall ML; Diaw AKD; Gningue-Sall D; Efremova Aaron S; Aaron JJ Environ Sci Pollut Res Int; 2020 Aug; 27(24):29927-29942. PubMed ID: 32506411 [TBL] [Abstract][Full Text] [Related]
33. Safety assessment of essential and toxic metals in infant formulas. Sipahi H; Eken A; Aydın A; Şahin G; Baydar T Turk J Pediatr; 2014; 56(4):385-91. PubMed ID: 25818957 [TBL] [Abstract][Full Text] [Related]
34. Recent progress on the heavy metals ameliorating potential of engineered nanomaterials in rice paddy: a comprehensive outlook on global food safety with nanotoxicitiy issues. Ahmed T; Noman M; Rizwan M; Ali S; Shahid MS; Li B Crit Rev Food Sci Nutr; 2023; 63(16):2672-2686. PubMed ID: 34554039 [TBL] [Abstract][Full Text] [Related]
35. An Endeavor in the Reaction-Based Approach to Fluorescent Probes for Biorelevant Analytes: Challenges and Achievements. Singha S; Jun YW; Sarkar S; Ahn KH Acc Chem Res; 2019 Sep; 52(9):2571-2581. PubMed ID: 31469267 [TBL] [Abstract][Full Text] [Related]
36. Development of lab-on-chip biosensor for the detection of toxic heavy metals: A review. Karthik V; Karuna B; Kumar PS; Saravanan A; Hemavathy RV Chemosphere; 2022 Jul; 299():134427. PubMed ID: 35358561 [TBL] [Abstract][Full Text] [Related]
37. Application of Nanotechnology in Analysis and Removal of Heavy Metals in Food and Water Resources. Gong Z; Chan HT; Chen Q; Chen H Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361182 [TBL] [Abstract][Full Text] [Related]
38. A review of biomolecules conjugated lanthanide up-conversion nanoparticles-based fluorescence probes in food safety and quality monitoring applications. Selva Sharma A; Marimuthu M; Varghese AW; Wu J; Xu J; Xiaofeng L; Devaraj S; Lan Y; Li H; Chen Q Crit Rev Food Sci Nutr; 2024 Jun; 64(18):6129-6159. PubMed ID: 36688820 [TBL] [Abstract][Full Text] [Related]
39. DNA damage in inhabitants exposed to heavy metals near Hudiara drain, Lahore, Pakistan. Jadoon S; Ali Q; Sami A; Haider MZ; Ashfaq M; Javed MA; Khan MA Sci Rep; 2024 Apr; 14(1):8408. PubMed ID: 38600156 [TBL] [Abstract][Full Text] [Related]
40. Recent Development in Fluorescent Probes for Copper Ion Detection. Ali M; Memon N; Mallah MA; Channa AS; Gaur R; Jiahai Y Curr Top Med Chem; 2022; 22(10):835-854. PubMed ID: 35232361 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]