BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37571087)

  • 1. Preparation and Characterization of Body-Temperature-Responsive Thermoset Shape Memory Polyurethane for Medical Applications.
    Yang X; Han Z; Jia C; Wang T; Wang X; Hu F; Zhang H; Zhao J; Zhang X
    Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroactive shape memory polyurethane composites reinforced with octadecyl isocyanate-functionalized multi-walled carbon nanotubes.
    Sun Y; Teng J; Kuang Y; Yang S; Yang J; Mao H; Gu Z
    Front Bioeng Biotechnol; 2022; 10():964080. PubMed ID: 35910020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bending shape memory behaviours of carbon fibre reinforced polyurethane-type shape memory polymer composites under relatively small deformation: Characterisation and computational simulation.
    Cheng X; Chen Y; Dai S; Bilek MMM; Bao S; Ye L
    J Mech Behav Biomed Mater; 2019 Dec; 100():103372. PubMed ID: 31369958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of soft segment crystallization and hard segment physical crosslink on shape memory function in antibacterial segmented polyurethane ionomers.
    Zhu Y; Hu J; Yeung K
    Acta Biomater; 2009 Nov; 5(9):3346-57. PubMed ID: 19460466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of Shape Memory Polyurethane Properties in Cold Programming Process Towards Its Applications.
    Staszczak M; Urbański L; Cristea M; Ionita D; Pieczyska EA
    Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38257020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications.
    Boire TC; Gupta MK; Zachman AL; Lee SH; Balikov DA; Kim K; Bellan LM; Sung HJ
    Acta Biomater; 2015 Sep; 24():53-63. PubMed ID: 26072363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reprint of: Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications.
    Boire TC; Gupta MK; Zachman AL; Lee SH; Balikov DA; Kim K; Bellan LM; Sung HJ
    Acta Biomater; 2016 Apr; 34():73-83. PubMed ID: 27018333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Polyurethane Shape Memory Polymer and Determination of Shape Fixity and Shape Recovery in Subsequent Thermomechanical Cycles.
    Staszczak M; Nabavian Kalat M; Golasiński KM; Urbański L; Takeda K; Matsui R; Pieczyska EA
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NIR Photothermal-Responsive Shape Memory Polyurethane with Protein-Inspired Aggregated Chymotrypsin-Sensitive Degradable Domains.
    Yang R; Liu W; Song N; Li X; Li Z; Luo F; Li J; Tan H
    Macromol Rapid Commun; 2022 Nov; 43(21):e2200490. PubMed ID: 35836315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effect of 4-Octyldecyloxybenzoic Acid on Liquid-Crystalline Polyurethane Composites with Triple-Shape Memory and Self-Healing Properties.
    Ban J; Zhu L; Chen S; Wang Y
    Materials (Basel); 2016 Sep; 9(9):. PubMed ID: 28773914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanically robust enzymatically degradable shape memory polyurethane urea with a rapid recovery response induced by NIR.
    Li X; Liu W; Li Y; Lan W; Zhao D; Wu H; Feng Y; He X; Li Z; Li J; Luo F; Tan H
    J Mater Chem B; 2020 Jun; 8(23):5117-5130. PubMed ID: 32412029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water-Triggered Stiffening of Shape-Memory Polyurethanes Composed of Hard Backbone Dangling PEG Soft Segments.
    Liu W; Wang A; Yang R; Wu H; Shao S; Chen J; Ma Y; Li Z; Wang Y; He X; Li J; Tan H; Fu Q
    Adv Mater; 2022 Nov; 34(46):e2201914. PubMed ID: 35502474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable shape memory polymers functionalized with anti-biofouling interpenetrating polymer networks.
    Dueramae I; Nishida M; Nakaji-Hirabayashi T; Matsumura K; Kitano H
    J Mater Chem B; 2016 Aug; 4(32):5394-5404. PubMed ID: 32263463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(epsilon-caprolactone) polyurethane and its shape-memory property.
    Ping P; Wang W; Chen X; Jing X
    Biomacromolecules; 2005; 6(2):587-92. PubMed ID: 15762617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation.
    Deng Z; Guo Y; Zhao X; Li L; Dong R; Guo B; Ma PX
    Acta Biomater; 2016 Dec; 46():234-244. PubMed ID: 27640917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable shape-memory polymers using polycaprolactone and isosorbide based polyurethane blends.
    Joo YS; Cha JR; Gong MS
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():426-435. PubMed ID: 30033273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influences of Crystallinity and Crosslinking Density on the Shape Recovery Force in Poly(ε-Caprolactone)-Based Shape-Memory Polymer Blends.
    Fulati A; Uto K; Ebara M
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PCL-based Shape Memory Polymers with Variable PDMS Soft Segment Lengths.
    Zhang D; Giese ML; Prukop SL; Grunlan MA
    J Polym Sci A Polym Chem; 2011 Feb; 49(3):754-761. PubMed ID: 22904597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape memory thermoplastic polyurethane (TPU)/poly(ε-caprolactone) (PCL) blends as self-knotting sutures.
    Jing X; Mi HY; Huang HX; Turng LS
    J Mech Behav Biomed Mater; 2016 Dec; 64():94-103. PubMed ID: 27490212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear/network poly(ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH).
    Rodriguez ED; Luo X; Mather PT
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):152-61. PubMed ID: 21250636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.