These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37571108)

  • 1. Review: Kirkwood-Riseman Model in Non-Dilute Polymeric Fluids.
    Phillies GDJ
    Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Kirkwood-Riseman Model of Polymer Solution Dynamics Is Qualitatively Correct.
    Phillies GDJ
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulational Tests of the Rouse Model.
    Phillies GDJ
    Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface diffusion dynamics of a single polymer chain in dilute solution.
    Qian HJ; Chen LJ; Lu ZY; Li ZS
    Phys Rev Lett; 2007 Aug; 99(6):068301. PubMed ID: 17930873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of bead-bead interactions on the static and dynamical properties of model polymer solutions.
    Xiao C; Heyes DM
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt B):5757-67. PubMed ID: 11970472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Persistent draining crossover in DNA and other semi-flexible polymers: Evidence from hydrodynamic models and extensive measurements on DNA solutions.
    Mansfield ML; Tsortos A; Douglas JF
    J Chem Phys; 2015 Sep; 143(12):124903. PubMed ID: 26429037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformation and diffusion behavior of ring polymers in solution: a comparison between molecular dynamics, multiparticle collision dynamics, and lattice Boltzmann simulations.
    Hegde GA; Chang JF; Chen YL; Khare R
    J Chem Phys; 2011 Nov; 135(18):184901. PubMed ID: 22088075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-over in the dynamics of polymer confined between two liquids of different viscosity.
    Giunta G; Carbone P
    Interface Focus; 2019 Jun; 9(3):20180074. PubMed ID: 31065342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-polymer dynamics under constraints: scaling theory and computer experiment.
    Milchev A
    J Phys Condens Matter; 2011 Mar; 23(10):103101. PubMed ID: 21335636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaling laws of entangled polysaccharides.
    Lopez CG; Voleske L; Richtering W
    Carbohydr Polym; 2020 Apr; 234():115886. PubMed ID: 32070507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying chain reptation in entangled polymer melts: topological and dynamical mapping of atomistic simulation results onto the tube model.
    Stephanou PS; Baig C; Tsolou G; Mavrantzas VG; Kröger M
    J Chem Phys; 2010 Mar; 132(12):124904. PubMed ID: 20370147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crossover from reptation to Rouse dynamics in the extended Rubinstein-Duke model.
    Drzewiński A; van Leeuwen JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031802. PubMed ID: 18517409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics and scaling of two-dimensional polymers in a dilute solution.
    Falck E; Punkkinen O; Vattulainen I; Ala-Nissila T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 1):050102. PubMed ID: 14682778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new scaling for the rotational diffusion of molecular probes in polymer solutions.
    Qing J; Chen A; Zhao N
    Phys Chem Chem Phys; 2017 Dec; 19(48):32687-32697. PubMed ID: 29199305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic interaction in polymer solutions simulated with dissipative particle dynamics.
    Jiang W; Huang J; Wang Y; Laradji M
    J Chem Phys; 2007 Jan; 126(4):044901. PubMed ID: 17286503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relaxation dynamics of Sierpinski hexagon fractal polymer: Exact analytical results in the Rouse-type approach and numerical results in the Zimm-type approach.
    Jurjiu A; Galiceanu M; Farcasanu A; Chiriac L; Turcu F
    J Chem Phys; 2016 Dec; 145(21):214901. PubMed ID: 28799361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of hydrodynamic correlations on the dynamics of polymers in dilute solution.
    Huang CC; Gompper G; Winkler RG
    J Chem Phys; 2013 Apr; 138(14):144902. PubMed ID: 24981544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Length-scale dependent relaxation shear modulus and viscoelastic hydrodynamic interactions in polymer liquids.
    Semenov AN; Farago J; Meyer H
    J Chem Phys; 2012 Jun; 136(24):244905. PubMed ID: 22755601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-time dynamics of Rouse-Zimm polymers in dilute solutions with hydrodynamic memory.
    Lisy V; Tothova J; Zatovsky AV
    J Chem Phys; 2004 Dec; 121(21):10699-706. PubMed ID: 15549955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.