BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 37571218)

  • 1. Recycling of Nanocellulose from Polyester-Cotton Textile Waste for Modification of Film Composites.
    Srichola P; Witthayolankowit K; Sukyai P; Sampoompuang C; Lobyam K; Kampakun P; Toomtong R
    Polymers (Basel); 2023 Aug; 15(15):. PubMed ID: 37571218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physicochemical Properties of Cellulose Nanocrystals Extracted from Postconsumer Polyester/Cotton-Blended Fabrics and Their Effects on PVA Composite Films.
    Baloyi RB; Sithole BB; Chunilall V
    Polymers (Basel); 2024 May; 16(11):. PubMed ID: 38891442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of Textile Waste Blends of Cotton and PET by Enzymatic Hydrolysis with Reusable Chemical Pretreatment.
    Boondaeng A; Keabpimai J; Srichola P; Vaithanomsat P; Trakunjae C; Niyomvong N
    Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37112111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melt-processed poly(vinyl alcohol) composites filled with microcrystalline cellulose from waste cotton fabrics.
    Sun X; Lu C; Liu Y; Zhang W; Zhang X
    Carbohydr Polym; 2014 Jan; 101():642-9. PubMed ID: 24299821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Green, chemical-free, and high-yielding extraction of nanocellulose from waste cotton fabric enabled by electron beam irradiation.
    Wu Q; Ding C; Wang B; Rong L; Mao Z; Feng X
    Int J Biol Macromol; 2024 May; 267(Pt 2):131461. PubMed ID: 38599424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recycling of Waste Cotton Textile Containing Elastane Fibers through Dissolution and Regeneration.
    Wang L; Huang S; Wang Y
    Membranes (Basel); 2022 Mar; 12(4):. PubMed ID: 35448324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanocellulose from recycled indigo-dyed denim fabric and its application in composite films.
    Zhong T; Dhandapani R; Liang D; Wang J; Wolcott MP; Van Fossen D; Liu H
    Carbohydr Polym; 2020 Jul; 240():116283. PubMed ID: 32475567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid-state NMR method for the quantification of cellulose and polyester in textile blends.
    Haslinger S; Hietala S; Hummel M; Maunu SL; Sixta H
    Carbohydr Polym; 2019 Mar; 207():11-16. PubMed ID: 30599991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Valorisation of cotton post-industrial textile waste into lactic acid: chemo-mechanical pretreatment, separate hydrolysis and fermentation using engineered yeast.
    Simonetti M; Butti P; Di Lorenzo RD; Mapelli V; Branduardi P
    Microb Cell Fact; 2024 Apr; 23(1):106. PubMed ID: 38600576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable nano composite reinforced with cellulose nano fiber from coconut industry waste for replacing synthetic plastic food packaging.
    Arun R; Shruthy R; Preetha R; Sreejit V
    Chemosphere; 2022 Mar; 291(Pt 1):132786. PubMed ID: 34762882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upcycling of cotton polyester blended textile waste to new man-made cellulose fibers.
    Haslinger S; Hummel M; Anghelescu-Hakala A; Määttänen M; Sixta H
    Waste Manag; 2019 Sep; 97():88-96. PubMed ID: 31447031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recycling of viscose yarn waste through one-step extraction of nanocellulose.
    Prado KS; Gonzales D; Spinacé MAS
    Int J Biol Macromol; 2019 Sep; 136():729-737. PubMed ID: 31226379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review on the enhancement of circular economy aspects focusing on nanocellulose composites.
    Azka MA; Adam A; Ridzuan SM; Sapuan SM; Habib A
    Int J Biol Macromol; 2024 Jun; 269(Pt 1):132052. PubMed ID: 38704068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Obtainment and characterization of nanocellulose from an unwoven industrial textile cotton waste: Effect of acid hydrolysis conditions.
    Maciel MMÁD; Benini KCCC; Voorwald HJC; Cioffi MOH
    Int J Biol Macromol; 2019 Apr; 126():496-506. PubMed ID: 30593806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an eco-friendly biodegradable plastic from jack fruit peel cellulose with different plasticizers and Boswellia serrata as filler.
    Reshmy R; Philip E; Vaisakh PH; Raj S; Paul SA; Madhavan A; Sindhu R; Binod P; Sirohi R; Pugazhendhi A; Pandey A
    Sci Total Environ; 2021 May; 767():144285. PubMed ID: 33429269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on nanocellulose isolated from waste chilli stems processing as dietary fiber in biscuits.
    Ma Y; Chai X; Bao H; Huang Y; Dong W
    PLoS One; 2023; 18(1):e0281142. PubMed ID: 36706130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of cotton fiber-based nanocellulose.
    Theivasanthi T; Anne Christma FL; Toyin AJ; Gopinath SCB; Ravichandran R
    Int J Biol Macromol; 2018 Apr; 109():832-836. PubMed ID: 29133091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different Preparation Method of Nanocellulose from Macaranga gigantea and Its Preliminary Study on Packaging Film Potential.
    Jasmani L; Jamaluddin NAN; Rusli R; Adnan S; Zakaria S
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of nanocellulose from corn husk for the development of antimicrobial biodegradable packaging film.
    Chawla P; Sridhar K; Kumar A; Sarangi PK; Bains A; Sharma M
    Int J Biol Macromol; 2023 Jul; 242(Pt 2):124805. PubMed ID: 37182633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradable sizing agents from soy protein via controlled hydrolysis and dis-entanglement for remediation of textile effluents.
    Yang M; Xu H; Hou X; Zhang J; Yang Y
    J Environ Manage; 2017 Mar; 188():26-31. PubMed ID: 27918924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.