BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 37571218)

  • 21. Production and Characterization of Nanocellulose from Maguey (
    Sumarago EC; Dela Cerna MFM; Leyson AKB; Tan NPB; Magsico KF
    Polymers (Basel); 2024 May; 16(10):. PubMed ID: 38794505
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cotton based composite fabric reinforced with waste polyester fibers for improved mechanical properties.
    Sharma K; Khilari V; Chaudhary BU; Jogi AB; Pandit AB; Kale RD
    Waste Manag; 2020 Apr; 107():227-234. PubMed ID: 32311640
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent Trends in Sustainable Textile Waste Recycling Methods: Current Situation and Future Prospects.
    Pensupa N; Leu SY; Hu Y; Du C; Liu H; Jing H; Wang H; Lin CSK
    Top Curr Chem (Cham); 2017 Aug; 375(5):76. PubMed ID: 28815435
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physicochemical Properties of Nanocellulose Isolated from Cotton Stalk Waste.
    Li M; He B; Chen Y; Zhao L
    ACS Omega; 2021 Oct; 6(39):25162-25169. PubMed ID: 34632175
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transparent Cellulose/Multi-Walled Carbon Nanotube Hybrids with Improved Ultraviolet-Shielding Properties Prepared from Cotton Textile Waste.
    Xu Z; Ma Y; Yao X; Wang H; Zhang Q; Ma Q; Zhang Z; Xia G; Zhang J; Zhang F
    Polymers (Basel); 2024 May; 16(9):. PubMed ID: 38732738
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Renewable High-Performance Fibers from the Chemical Recycling of Cotton Waste Utilizing an Ionic Liquid.
    Asaadi S; Hummel M; Hellsten S; Härkäsalmi T; Ma Y; Michud A; Sixta H
    ChemSusChem; 2016 Nov; 9(22):3250-3258. PubMed ID: 27796085
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel sustainable alternatives for the fashion industry: A method of chemically recycling waste textiles via acid hydrolysis.
    Sanchis-Sebastiá M; Ruuth E; Stigsson L; Galbe M; Wallberg O
    Waste Manag; 2021 Feb; 121():248-254. PubMed ID: 33388647
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ixora coccinea L. - A reliable source of nanocellulose for bio-adsorbent applications.
    Unni R; R R; Ramesh K; Mathew TJ; A A; Dalvi YB; Sindhu R; Madhavan A; Binod P; Pandey A; Syed A; Verma M; Ravindran B; Awasthi MK
    Int J Biol Macromol; 2023 Jun; 239():124467. PubMed ID: 37068536
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biodegradable, Flexible and Ultraviolet Blocking Nanocellulose Composite Film Incorporated with Lignin Nanoparticles.
    Bian H; Shu X; Su W; Luo D; Dong M; Liu X; Ji X; Dai H
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499190
    [TBL] [Abstract][Full Text] [Related]  

  • 30. All-Cellulose Composite Laminates Made from Wood-Based Textiles: Effects of Process Conditions and the Addition of TEMPO-Oxidized Nanocellulose.
    Uusi-Tarkka EK; Levanič J; Heräjärvi H; Kadi N; Skrifvars M; Haapala A
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36235906
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzymatic textile recycling - best practices and outlook.
    Piribauer B; Bartl A; Ipsmiller W
    Waste Manag Res; 2021 Oct; 39(10):1277-1290. PubMed ID: 34238113
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Converting textile waste into value-added chemicals: An integrated bio-refinery process.
    Cho EJ; Lee YG; Song Y; Kim HY; Nguyen DT; Bae HJ
    Environ Sci Ecotechnol; 2023 Jul; 15():100238. PubMed ID: 36785801
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of Light Cementitious Matrix with Composite Textile Reinforcement from Garment Waste.
    Grings KJO; Carneiro Ribeiro FR; Junior DVA; de Azevedo ARG; Kulakowski MP
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676469
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Chitosan Implementation into Cotton and Polyester/Cotton Blend Fabrics.
    Flinčec Grgac S; Tarbuk A; Dekanić T; Sujka W; Draczyński Z
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32244687
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly Selective Enzymatic Recovery of Building Blocks from Wool-Cotton-Polyester Textile Waste Blends.
    Quartinello F; Vecchiato S; Weinberger S; Kremenser K; Skopek L; Pellis A; Guebitz GM
    Polymers (Basel); 2018 Oct; 10(10):. PubMed ID: 30961032
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cellulose Nanofibers from Olive Tree Pruning as Food Packaging Additive of a Biodegradable Film.
    Sánchez-Gutiérrez M; Bascón-Villegas I; Espinosa E; Carrasco E; Pérez-Rodríguez F; Rodríguez A
    Foods; 2021 Jul; 10(7):. PubMed ID: 34359453
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel process for synthesis of spherical nanocellulose by controlled hydrolysis of microcrystalline cellulose using anaerobic microbial consortium.
    Satyamurthy P; Vigneshwaran N
    Enzyme Microb Technol; 2013 Jan; 52(1):20-5. PubMed ID: 23199734
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Making Biodegradable Seedling Pots from Textile and Paper Waste-Part A: Factors Affecting Tensile Strength.
    Juanga-Labayen JP; Yuan Q
    Int J Environ Res Public Health; 2021 Jun; 18(13):. PubMed ID: 34209756
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advancement in conductive cotton fabrics through in situ polymerization of polypyrrole-nanocellulose composites.
    Hebeish A; Farag S; Sharaf S; Shaheen TI
    Carbohydr Polym; 2016 Oct; 151():96-102. PubMed ID: 27474547
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Current recycling strategies and high-value utilization of waste cotton.
    Lu L; Fan W; Meng X; Xue L; Ge S; Wang C; Foong SY; Tan CSY; Sonne C; Aghbashlo M; Tabatabaei M; Lam SS
    Sci Total Environ; 2023 Jan; 856(Pt 1):158798. PubMed ID: 36116663
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.