BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 37571423)

  • 1. Transcriptomic Analysis of Human Skeletal Muscle in Response to Aerobic Exercise and Protein Intake.
    Zeng X; Li L; Xia Z; Zou L; Kwok T; Su Y
    Nutrients; 2023 Aug; 15(15):. PubMed ID: 37571423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome response of human skeletal muscle to divergent exercise stimuli.
    Dickinson JM; D'Lugos AC; Naymik MA; Siniard AL; Wolfe AJ; Curtis DR; Huentelman MJ; Carroll CC
    J Appl Physiol (1985); 2018 Jun; 124(6):1529-1540. PubMed ID: 29543133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerobic exercise augments muscle transcriptome profile of resistance exercise.
    Lundberg TR; Fernandez-Gonzalo R; Tesch PA; Rullman E; Gustafsson T
    Am J Physiol Regul Integr Comp Physiol; 2016 Jun; 310(11):R1279-87. PubMed ID: 27101291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute molecular responses in untrained and trained muscle subjected to aerobic and resistance exercise training versus resistance training alone.
    Fernandez-Gonzalo R; Lundberg TR; Tesch PA
    Acta Physiol (Oxf); 2013 Dec; 209(4):283-94. PubMed ID: 24112827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Transcriptome and Methylome Analysis in Human Skeletal Muscle Anabolism, Hypertrophy and Epigenetic Memory.
    Turner DC; Seaborne RA; Sharples AP
    Sci Rep; 2019 Mar; 9(1):4251. PubMed ID: 30862794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic Signatures and Upstream Regulation in Human Skeletal Muscle Adapted to Disuse and Aerobic Exercise.
    Makhnovskii PA; Bokov RO; Kolpakov FA; Popov DV
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33530535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerobic exercise alters skeletal muscle molecular responses to resistance exercise.
    Lundberg TR; Fernandez-Gonzalo R; Gustafsson T; Tesch PA
    Med Sci Sports Exerc; 2012 Sep; 44(9):1680-8. PubMed ID: 22460475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of acute aerobic and resistance exercise on mTOR signaling and autophagy markers in untrained human skeletal muscle.
    Mazo CE; D'Lugos AC; Sweeney KR; Haus JM; Angadi SS; Carroll CC; Dickinson JM
    Eur J Appl Physiol; 2021 Oct; 121(10):2913-2924. PubMed ID: 34196787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular regulation of skeletal muscle mitochondrial biogenesis following blood flow-restricted aerobic exercise: a call to action.
    Preobrazenski N; Islam H; Gurd BJ
    Eur J Appl Physiol; 2021 Jul; 121(7):1835-1847. PubMed ID: 33830325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptomic profiling of skeletal muscle adaptations to exercise and inactivity.
    Pillon NJ; Gabriel BM; Dollet L; Smith JAB; Sardón Puig L; Botella J; Bishop DJ; Krook A; Zierath JR
    Nat Commun; 2020 Jan; 11(1):470. PubMed ID: 31980607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Truncated splice variant PGC-1α4 is not associated with exercise-induced human muscle hypertrophy.
    Lundberg TR; Fernandez-Gonzalo R; Norrbom J; Fischer H; Tesch PA; Gustafsson T
    Acta Physiol (Oxf); 2014 Oct; 212(2):142-51. PubMed ID: 24800995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three months of bed rest induce a residual transcriptomic signature resilient to resistance exercise countermeasures.
    Fernandez-Gonzalo R; Tesch PA; Lundberg TR; Alkner BA; Rullman E; Gustafsson T
    FASEB J; 2020 Jun; 34(6):7958-7969. PubMed ID: 32293758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exercise is associated with younger methylome and transcriptome profiles in human skeletal muscle.
    Voisin S; Seale K; Jacques M; Landen S; Harvey NR; Haupt LM; Griffiths LR; Ashton KJ; Coffey VG; Thompson JM; Doering TM; Lindholm ME; Walsh C; Davison G; Irwin R; McBride C; Hansson O; Asplund O; Heikkinen AE; Piirilä P; Pietiläinen KH; Ollikainen M; Blocquiaux S; Thomis M; Coletta DK; Sharples AP; Eynon N
    Aging Cell; 2024 Jan; 23(1):e13859. PubMed ID: 37128843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic transcriptomic responses to divergent acute exercise stimuli in young adults.
    Lavin KM; Graham ZA; McAdam JS; O'Bryan SM; Drummer D; Bell MB; Kelley CJ; Lixandrão ME; Peoples B; Tuggle SC; Seay RS; Van Keuren-Jensen K; Huentelman MJ; Pirrotte P; Reiman R; Alsop E; Hutchins E; Antone J; Bonfitto A; Meechoovet B; Palade J; Talboom JS; Sullivan A; Aban I; Peri K; Broderick TJ; Bamman MM
    Physiol Genomics; 2023 Apr; 55(4):194-212. PubMed ID: 36939205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Analysis of Skeletal Muscle Transcriptional Signatures Associated With Aerobic Exercise Capacity or Response to Training in Humans and Rats.
    Kelahmetoglu Y; Jannig PR; Cervenka I; Koch LG; Britton SL; Zhou J; Wang H; Robinson MM; Nair KS; Ruas JL
    Front Endocrinol (Lausanne); 2020; 11():591476. PubMed ID: 33193103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerobic exercise does not compromise muscle hypertrophy response to short-term resistance training.
    Lundberg TR; Fernandez-Gonzalo R; Gustafsson T; Tesch PA
    J Appl Physiol (1985); 2013 Jan; 114(1):81-9. PubMed ID: 23104700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contractile activity-specific transcriptome response to acute endurance exercise and training in human skeletal muscle.
    Popov DV; Makhnovskii PA; Shagimardanova EI; Gazizova GR; Lysenko EA; Gusev OA; Vinogradova OL
    Am J Physiol Endocrinol Metab; 2019 Apr; 316(4):E605-E614. PubMed ID: 30779632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time course-dependent changes in the transcriptome of human skeletal muscle during recovery from endurance exercise: from inflammation to adaptive remodeling.
    Neubauer O; Sabapathy S; Ashton KJ; Desbrow B; Peake JM; Lazarus R; Wessner B; Cameron-Smith D; Wagner KH; Haseler LJ; Bulmer AC
    J Appl Physiol (1985); 2014 Feb; 116(3):274-87. PubMed ID: 24311745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. β
    Azevedo Voltarelli V; Coronado M; Gonçalves Fernandes L; Cruz Campos J; Jannig PR; Batista Ferreira JC; Fajardo G; Chakur Brum P; Bernstein D
    Cells; 2021 Jan; 10(1):. PubMed ID: 33450889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reductions in skeletal muscle mitochondrial mass are not restored following exercise training in patients with chronic kidney disease.
    Watson EL; Baker LA; Wilkinson TJ; Gould DW; Graham-Brown MPM; Major RW; Ashford RU; Philp A; Smith AC
    FASEB J; 2020 Jan; 34(1):1755-1767. PubMed ID: 31914685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.