BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37571446)

  • 1. An Ensemble Learning Model for Detecting Soybean Seedling Emergence in UAV Imagery.
    Zhang B; Zhao D
    Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of Off-Target Dicamba Damage on Soybean Using UAV Imagery and Deep Learning.
    Tian F; Vieira CC; Zhou J; Zhou J; Chen P
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapeseed Seedling Stand Counting and Seeding Performance Evaluation at Two Early Growth Stages Based on Unmanned Aerial Vehicle Imagery.
    Zhao B; Zhang J; Yang C; Zhou G; Ding Y; Shi Y; Zhang D; Xie J; Liao Q
    Front Plant Sci; 2018; 9():1362. PubMed ID: 30298081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for small-sized wheat seedlings detection: from annotation mode to model construction.
    Wang S; Zhao J; Cai Y; Li Y; Qi X; Qiu X; Yao X; Tian Y; Zhu Y; Cao W; Zhang X
    Plant Methods; 2024 Jan; 20(1):15. PubMed ID: 38287423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the accuracy of cotton seedling emergence rate estimation by fusing UAV-based multispectral vegetation indices.
    Li T; Wang H; Cui J; Wang W; Li W; Jiang M; Shi X; Song J; Wang J; Lv X; Zhang L
    Front Plant Sci; 2024; 15():1333089. PubMed ID: 38601301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of crop plant density at early mixed growth stages using UAV imagery.
    Koh JCO; Hayden M; Daetwyler H; Kant S
    Plant Methods; 2019; 15():64. PubMed ID: 31249606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soybean Seedling Root Segmentation Using Improved U-Net Network.
    Xu X; Qiu J; Zhang W; Zhou Z; Kang Y
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning Approaches for Rice Seedling Growth Stages Detection.
    Tan S; Liu J; Lu H; Lan M; Yu J; Liao G; Wang Y; Li Z; Qi L; Ma X
    Front Plant Sci; 2022; 13():914771. PubMed ID: 35755682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapeseed Stand Count Estimation at Leaf Development Stages With UAV Imagery and Convolutional Neural Networks.
    Zhang J; Zhao B; Yang C; Shi Y; Liao Q; Zhou G; Wang C; Xie T; Jiang Z; Zhang D; Yang W; Huang C; Xie J
    Front Plant Sci; 2020; 11():617. PubMed ID: 32587594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lightweight Deep Learning Models for High-Precision Rice Seedling Segmentation from UAV-Based Multispectral Images.
    Zhang P; Sun X; Zhang D; Yang Y; Wang Z
    Plant Phenomics; 2023; 5():0123. PubMed ID: 38047001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The inversion of nitrogen balance index in typical growth period of soybean based on high definition digital image and hyperspectral data on unmanned aerial vehicles].
    Li CC; Chen P; Lu GZ; Ma CY; Ma XX; Wang ST
    Ying Yong Sheng Tai Xue Bao; 2018 Apr; 29(4):1225-1232. PubMed ID: 29726232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of Soybean Lodging Using UAV Imagery and Machine Learning.
    Sarkar S; Zhou J; Scaboo A; Zhou J; Aloysius N; Lim TT
    Plants (Basel); 2023 Aug; 12(16):. PubMed ID: 37631105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of Stress Induced by Soybean Aphid (Hemiptera: Aphididae) Using Multispectral Imagery from Unmanned Aerial Vehicles.
    Marston ZPD; Cira TM; Hodgson EW; Knight JF; Macrae IV; Koch RL
    J Econ Entomol; 2020 Apr; 113(2):779-786. PubMed ID: 31782504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Comparison of precision in retrieving soybean leaf area index based on multi-source remote sensing data].
    Gao L; Li CC; Wang BS; Yang Gui-jun ; Wang L; Fu K
    Ying Yong Sheng Tai Xue Bao; 2016 Jan; 27(1):191-200. PubMed ID: 27228609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated extraction of
    Ji Y; Yan E; Yin X; Song Y; Wei W; Mo D
    Front Plant Sci; 2022; 13():958940. PubMed ID: 36035664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling of machine learning methods to improve estimation of ground coverage from unmanned aerial vehicle (UAV) imagery for high-throughput phenotyping of crops.
    Hu P; Chapman SC; Zheng B
    Funct Plant Biol; 2021 Jul; 48(8):766-779. PubMed ID: 33663681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic Scoring of Rhizoctonia Crown and Root Rot Affected Sugar Beet Fields from Orthorectified UAV Images Using Machine Learning.
    Ispizua Yamati FR; Günder M; Barreto A; Bömer J; Laufer D; Bauckhage C; Mahlein AK
    Plant Dis; 2024 Mar; 108(3):711-724. PubMed ID: 37755420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are unmanned aerial vehicle-based hyperspectral imaging and machine learning advancing crop science?
    Matese A; Prince Czarnecki JM; Samiappan S; Moorhead R
    Trends Plant Sci; 2024 Feb; 29(2):196-209. PubMed ID: 37802693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-Time Vehicle-Detection Method in Bird-View Unmanned-Aerial-Vehicle Imagery.
    Han S; Yoo J; Kwon S
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution.
    Peña JM; Torres-Sánchez J; Serrano-Pérez A; de Castro AI; López-Granados F
    Sensors (Basel); 2015 Mar; 15(3):5609-26. PubMed ID: 25756867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.