These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37571446)

  • 41. Estimation of tomato water status with photochemical reflectance index and machine learning: Assessment from proximal sensors and UAV imagery.
    Tang Z; Jin Y; Brown PH; Park M
    Front Plant Sci; 2023; 14():1057733. PubMed ID: 37089640
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Wheat leaf area index prediction using data fusion based on high-resolution unmanned aerial vehicle imagery.
    Wu S; Deng L; Guo L; Wu Y
    Plant Methods; 2022 May; 18(1):68. PubMed ID: 35590377
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Using computer vision, image analysis and UAVs for the automatic recognition and counting of common cranes (Grus grus).
    Chen A; Jacob M; Shoshani G; Charter M
    J Environ Manage; 2023 Feb; 328():116948. PubMed ID: 36516707
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An Improved CenterNet Model for Insulator Defect Detection Using Aerial Imagery.
    Xia H; Yang B; Li Y; Wang B
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458835
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Surface sediment classification using a deep learning model and unmanned aerial vehicle data of tidal flats.
    Kim KL; Woo HJ; Jou HT; Jung HC; Lee SK; Ryu JH
    Mar Pollut Bull; 2024 Jan; 198():115823. PubMed ID: 38039578
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Combining Unmanned Aerial Vehicle (UAV)-Based Multispectral Imagery and Ground-Based Hyperspectral Data for Plant Nitrogen Concentration Estimation in Rice.
    Zheng H; Cheng T; Li D; Yao X; Tian Y; Cao W; Zhu Y
    Front Plant Sci; 2018; 9():936. PubMed ID: 30034405
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inter-row navigation line detection for cotton with broken rows.
    Liang X; Chen B; Wei C; Zhang X
    Plant Methods; 2022 Jul; 18(1):90. PubMed ID: 35780217
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Deep learning for automated detection of Drosophila suzukii: potential for UAV-based monitoring.
    Roosjen PP; Kellenberger B; Kooistra L; Green DR; Fahrentrapp J
    Pest Manag Sci; 2020 Sep; 76(9):2994-3002. PubMed ID: 32246738
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Research on improved YOLOv8n based potato seedling detection in UAV remote sensing images.
    Wang L; Wang G; Yang S; Liu Y; Yang X; Feng B; Sun W; Li H
    Front Plant Sci; 2024; 15():1387350. PubMed ID: 38751836
    [TBL] [Abstract][Full Text] [Related]  

  • 50. UAV-based multi-sensor data fusion and machine learning algorithm for yield prediction in wheat.
    Fei S; Hassan MA; Xiao Y; Su X; Chen Z; Cheng Q; Duan F; Chen R; Ma Y
    Precis Agric; 2023; 24(1):187-212. PubMed ID: 35967193
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Maize Tassel Detection From UAV Imagery Using Deep Learning.
    Alzadjali A; Alali MH; Veeranampalayam Sivakumar AN; Deogun JS; Scott S; Schnable JC; Shi Y
    Front Robot AI; 2021; 8():600410. PubMed ID: 34179104
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Soybean cyst nematode detection and management: a review.
    Arjoune Y; Sugunaraj N; Peri S; Nair SV; Skurdal A; Ranganathan P; Johnson B
    Plant Methods; 2022 Sep; 18(1):110. PubMed ID: 36071455
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Vehicle Detection From UAV Imagery With Deep Learning: A Review.
    Bouguettaya A; Zarzour H; Kechida A; Taberkit AM
    IEEE Trans Neural Netw Learn Syst; 2022 Nov; 33(11):6047-6067. PubMed ID: 34029200
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Automatic counting of rapeseed inflorescences using deep learning method and UAV RGB imagery.
    Li J; Li Y; Qiao J; Li L; Wang X; Yao J; Liao G
    Front Plant Sci; 2023; 14():1101143. PubMed ID: 36798713
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Estimation of soybean yield based on high-throughput phenotyping and machine learning.
    Li X; Chen M; He S; Xu X; He L; Wang L; Gao Y; Tang F; Gong T; Wang W; Xu M; Liu C; Yu L; Liu W; Yang W
    Front Plant Sci; 2024; 15():1395760. PubMed ID: 38903425
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nondestructive Classification of Soybean Seed Varieties by Hyperspectral Imaging and Ensemble Machine Learning Algorithms.
    Wei Y; Li X; Pan X; Li L
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33297289
    [TBL] [Abstract][Full Text] [Related]  

  • 57. UAV and Machine Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision Agriculture.
    Mazzia V; Comba L; Khaliq A; Chiaberge M; Gay P
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365636
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Entropy Weight Ensemble Framework for Yield Prediction of Winter Wheat Under Different Water Stress Treatments Using Unmanned Aerial Vehicle-Based Multispectral and Thermal Data.
    Fei S; Hassan MA; Ma Y; Shu M; Cheng Q; Li Z; Chen Z; Xiao Y
    Front Plant Sci; 2021; 12():730181. PubMed ID: 34987529
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Detection of Pine Wilt Nematode from Drone Images Using UAV.
    Sun Z; Ibrayim M; Hamdulla A
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808205
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identifying the Branch of Kiwifruit Based on Unmanned Aerial Vehicle (UAV) Images Using Deep Learning Method.
    Niu Z; Deng J; Zhang X; Zhang J; Pan S; Mu H
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34209571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.