BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 37571530)

  • 1. Foot Sole Contact Forces vs. Ground Contact Forces to Obtain Foot Joint Moments for In-Shoe Gait-A Preliminary Study.
    Sancho-Bru JL; Sanchis-Sales E; Rodríguez-Cervantes PJ; Vergés-Salas C
    Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of instrumented shoes for ambulatory assessment of ground reaction forces.
    Liedtke C; Fokkenrood SA; Menger JT; van der Kooij H; Veltink PH
    Gait Posture; 2007 Jun; 26(1):39-47. PubMed ID: 17010612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical effects of rocker shoes on plantar aponeurosis strain in patients with plantar fasciitis and healthy controls.
    Greve C; Schuitema D; Otten B; van Kouwenhove L; Verhaar E; Postema K; Dekker R; Hijmans JM
    PLoS One; 2019; 14(10):e0222388. PubMed ID: 31600227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical Effects of Prefabricated Foot Orthoses and Rocker-Sole Footwear in Individuals With First Metatarsophalangeal Joint Osteoarthritis.
    Menz HB; Auhl M; Tan JM; Levinger P; Roddy E; Munteanu SE
    Arthritis Care Res (Hoboken); 2016 May; 68(5):603-11. PubMed ID: 26640157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partitioning ground reaction forces for multi-segment foot joint kinetics.
    Bruening DA; Takahashi KZ
    Gait Posture; 2018 May; 62():111-116. PubMed ID: 29544155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the instrumented force shoe on gait pattern in patients with osteoarthritis of the knee.
    van den Noort J; van der Esch M; Steultjens MP; Dekker J; Schepers M; Veltink PH; Harlaar J
    Med Biol Eng Comput; 2011 Dec; 49(12):1381-92. PubMed ID: 21866409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The reliability of the Adelaide in-shoe foot model.
    Bishop C; Hillier S; Thewlis D
    Gait Posture; 2017 Jul; 56():1-7. PubMed ID: 28463819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Footwear traction and lower extremity joint loading.
    Wannop JW; Worobets JT; Stefanyshyn DJ
    Am J Sports Med; 2010 Jun; 38(6):1221-8. PubMed ID: 20348282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic coupling in distal foot joints during walking.
    Williams LR; Arch ES; Bruening DA
    J Foot Ankle Res; 2023 Jul; 16(1):44. PubMed ID: 37488576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint moments and contact forces in the foot during walking.
    Kim Y; Lee KM; Koo S
    J Biomech; 2018 Jun; 74():79-85. PubMed ID: 29735264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can the F-Scan in-shoe pressure system be combined with the GAITRite® temporal and spatial parameter-recording walkway as a cost-effective alternative in clinical gait analysis? A validation study.
    Speight S; Reel S; Stephenson J
    J Foot Ankle Res; 2023 May; 16(1):30. PubMed ID: 37194058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of modified solid ankle-foot orthosis to be used with and without shoe on dynamic balance and gait characteristic in asymptomatic people.
    Arvin M; Kamyab M; Moradi V; Hajiaghaei B; Maroufi N
    Prosthet Orthot Int; 2013 Apr; 37(2):145-51. PubMed ID: 22907949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical stimulation of the foot sole in a supine position for ground reaction force simulation.
    Fang J; Vuckovic A; Galen S; Conway BA; Hunt KJ
    J Neuroeng Rehabil; 2014 Nov; 11():159. PubMed ID: 25432580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Foot center of pressure trajectory alteration by biomechanical manipulation of shoe design.
    Khoury M; Wolf A; Debbi EM; Herman A; Haim A
    Foot Ankle Int; 2013 Apr; 34(4):593-8. PubMed ID: 23449662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptation of Running Biomechanics to Repeated Barefoot Running: A Randomized Controlled Study.
    Hollander K; Liebl D; Meining S; Mattes K; Willwacher S; Zech A
    Am J Sports Med; 2019 Jul; 47(8):1975-1983. PubMed ID: 31166116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Running ground reaction forces across footwear conditions are predicted from the motion of two body mass components.
    Udofa AB; Clark KP; Ryan LJ; Weyand PG
    J Appl Physiol (1985); 2019 May; 126(5):1315-1325. PubMed ID: 30763160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting ground reaction and tibiotalar contact forces after total ankle arthroplasty during walking.
    Zhang Y; Chen Z; Peng Y; Zhao H; Liang X; Jin Z
    Proc Inst Mech Eng H; 2020 Dec; 234(12):1432-1444. PubMed ID: 32741296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparability of off the shelf foot orthoses in the redistribution of forces in midfoot osteoarthritis patients.
    Chapman GJ; Halstead J; Redmond AC
    Gait Posture; 2016 Sep; 49():235-240. PubMed ID: 27459418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of anti-pronation shoes on lower limb kinematics and kinetics in female runners with pronated feet: The role of physical fatigue.
    Jafarnezhadgero A; Alavi-Mehr SM; Granacher U
    PLoS One; 2019; 14(5):e0216818. PubMed ID: 31086402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.