These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37571990)

  • 1. Design and analysis of a passive exoskeleton with its hip joint energy-storage.
    Hu S; Chen W; Xiong X; Sun X; He C
    Proc Inst Mech Eng H; 2023 Sep; 237(9):1039-1051. PubMed ID: 37571990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concept design of hybrid-actuated lower limb exoskeleton to reduce the metabolic cost of walking with heavy loads.
    Meng Q; Kong B; Zeng Q; Fei C; Yu H
    PLoS One; 2023; 18(5):e0282800. PubMed ID: 37186605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupled exoskeleton assistance simplifies control and maintains metabolic benefits: A simulation study.
    Bianco NA; Franks PW; Hicks JL; Delp SL
    PLoS One; 2022; 17(1):e0261318. PubMed ID: 34986191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle-tendon mechanics explain unexpected effects of exoskeleton assistance on metabolic rate during walking.
    Jackson RW; Dembia CL; Delp SL; Collins SH
    J Exp Biol; 2017 Jun; 220(Pt 11):2082-2095. PubMed ID: 28341663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the biological mechanics and energetics of the hip joint muscle-tendon system assisted by passive hip exoskeleton.
    Chen W; Wu S; Zhou T; Xiong C
    Bioinspir Biomim; 2018 Dec; 14(1):016012. PubMed ID: 30511650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical and Physiological Evaluation of a Multi-Joint Exoskeleton with Active-Passive Assistance for Walking.
    Cao W; Zhang Z; Chen C; He Y; Wang D; Wu X
    Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulating Metabolic Energy Among Joints During Human Walking Using a Multiarticular Unpowered Exoskeleton.
    Zhou T; Xiong C; Zhang J; Chen W; Huang X
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():662-672. PubMed ID: 33690121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Back-Support Exoskeleton Use on Lower Limb Joint Kinematics and Kinetics During Level Walking.
    Park JH; Lee Y; Madinei S; Kim S; Nussbaum MA; Srinivasan D
    Ann Biomed Eng; 2022 Aug; 50(8):964-977. PubMed ID: 35478066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation-based biomechanical assessment of unpowered exoskeletons for running.
    Aftabi H; Nasiri R; Ahmadabadi MN
    Sci Rep; 2021 Jun; 11(1):11846. PubMed ID: 34088911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting.
    Zhou X; Zheng L
    IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):167-185. PubMed ID: 34254566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a Multi-Joint Passive Exoskeleton for Vertical Jumping Using Optimal Control.
    Ostraich B; Riemer R
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2815-2823. PubMed ID: 36155480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effects of ankle exoskeleton assistance during human walking on lower limb muscle contractions and coordination patterns].
    Wang W; Ding J; Wang Y; Liu Y; Zhang J; Liu J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):75-83. PubMed ID: 35231968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reducing the metabolic energy of walking and running using an unpowered hip exoskeleton.
    Zhou T; Xiong C; Zhang J; Hu D; Chen W; Huang X
    J Neuroeng Rehabil; 2021 Jun; 18(1):95. PubMed ID: 34092259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW; Collins SH
    J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Validation of a Self-Aligning Knee Exoskeleton With Hip Rotation Capability.
    Li G; Liang X; Lu H; Su T; Hou ZG
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():472-481. PubMed ID: 38227411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the Influence of Structured Familiarization to an Adjustable, Passive Load-Bearing Exoskeleton on Oxygen Consumption and Lower Limb Muscle Activation During Walking.
    Diamond-Ouellette G; Le Quang M; Karakolis T; Bouyer LJ; Best KL
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2441-2449. PubMed ID: 38935466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a Payload Adjustment Device for an Unpowered Lower-Limb Exoskeleton.
    Yun J; Kang O; Joe HM
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34208291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an unpowered ankle exoskeleton for walking assist.
    Leclair J; Pardoel S; Helal A; Doumit M
    Disabil Rehabil Assist Technol; 2020 Jan; 15(1):1-13. PubMed ID: 30132353
    [No Abstract]   [Full Text] [Related]  

  • 20. Abduction/Adduction Assistance From Powered Hip Exoskeleton Enables Modulation of User Step Width During Walking.
    Alili A; Fleming A; Nalam V; Liu M; Dean J; Huang H
    IEEE Trans Biomed Eng; 2024 Jan; 71(1):334-342. PubMed ID: 37540615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.