BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 37572130)

  • 1. Physiologically based pharmacokinetic model combined with reverse dose method to study the nephrotoxic tolerance dose of tacrolimus.
    Cai L; Ke M; Wang H; Wu W; Lin R; Huang P; Lin C
    Arch Toxicol; 2023 Oct; 97(10):2659-2673. PubMed ID: 37572130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Population pharmacokinetic analysis and dosing guidelines for tacrolimus co-administration with Wuzhi capsule in Chinese renal transplant recipients.
    Jing Y; Kong Y; Hou X; Liu H; Fu Q; Jiao Z; Peng H; Wei X
    J Clin Pharm Ther; 2021 Aug; 46(4):1117-1128. PubMed ID: 33768546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of CPY3A5 Genetic Polymorphisms on the Pharmacokinetics of Extendedrelease and Immediate-release Tacrolimus Formulations in Renal Transplant Recipients: A Systematic Review and Meta-analysis.
    Xie Q; Xiang Q; Liu Z; Mu G; Zhou S; Zhang Z; Ma L; Cui Y
    Curr Drug Metab; 2021; 22(10):758-771. PubMed ID: 34525930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A systematic review of the effect of CYP3A5 genotype on the apparent oral clearance of tacrolimus in renal transplant recipients.
    Barry A; Levine M
    Ther Drug Monit; 2010 Dec; 32(6):708-14. PubMed ID: 20864901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of CYP3A5 genotype on de-novo LCP tacrolimus dosing and monitoring in kidney transplantation.
    Rao N; Carcella T; Patel N; Bartlett F; Posadas MA; Casey M; Dubay DA; Taber DJ
    Pharmacogenet Genomics; 2023 Apr; 33(3):59-65. PubMed ID: 36877088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CYP3A5 polymorphisms and their effects on tacrolimus exposure in an ethnically diverse South African renal transplant population.
    Muller WK; Dandara C; Manning K; Mhandire D; Ensor J; Barday Z; Freercks R
    S Afr Med J; 2020 Jan; 110(2):159-166. PubMed ID: 32657689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prevalence of CYP3A5 Genomic Variances and Their Impact on Tacrolimus Dosing Requirements among Kidney Transplant Recipients in Eastern North Carolina.
    Maldonado AQ; Asempa T; Hudson S; Rebellato LM
    Pharmacotherapy; 2017 Sep; 37(9):1081-1088. PubMed ID: 28605053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative performance of oral midazolam clearance and plasma 4β-hydroxycholesterol to explain interindividual variability in tacrolimus clearance.
    Vanhove T; de Jonge H; de Loor H; Annaert P; Diczfalusy U; Kuypers DR
    Br J Clin Pharmacol; 2016 Dec; 82(6):1539-1549. PubMed ID: 27501475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CYP3A5 and ABCB1 polymorphisms and tacrolimus pharmacokinetics in renal transplant candidates: guidelines from an experimental study.
    Haufroid V; Wallemacq P; VanKerckhove V; Elens L; De Meyer M; Eddour DC; Malaise J; Lison D; Mourad M
    Am J Transplant; 2006 Nov; 6(11):2706-13. PubMed ID: 17049058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effects of CYP3A5 Genetic Polymorphisms on Serum Tacrolimus Dose-Adjusted Concentrations and Long-Term Prognosis in Chinese Heart Transplantation Recipients.
    Liu BY; Chen WQ; Chen ZG; Huang J; Liao ZK; Liu Q; Zheng Z; Song YH; Wang W; Hu SS
    Eur J Drug Metab Pharmacokinet; 2019 Dec; 44(6):771-776. PubMed ID: 31087280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion from Twice-Daily Prograf
    Yau WP; Loh CW; Vathsala A
    Eur J Drug Metab Pharmacokinet; 2019 Aug; 44(4):481-492. PubMed ID: 30471066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymorphism of the CYP3A5 gene and its effect on tacrolimus blood level.
    Nair SS; Sarasamma S; Gracious N; George J; Anish TS; Radhakrishnan R
    Exp Clin Transplant; 2015 Apr; 13 Suppl 1():197-200. PubMed ID: 25894154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative clinical trial of the variability factors of the exposure indices used for the drug monitoring of two tacrolimus formulations in kidney transplant recipients.
    Marquet P; Albano L; Woillard JB; Rostaing L; Kamar N; Sakarovitch C; Gatault P; Buchler M; Charpentier B; Thervet E; Cassuto E
    Pharmacol Res; 2018 Mar; 129():84-94. PubMed ID: 29229354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association of ABCB1, CYP3A4*18B and CYP3A5*3 genotypes with the pharmacokinetics of tacrolimus in healthy Chinese subjects: a population pharmacokinetic analysis.
    Shi XJ; Geng F; Jiao Z; Cui XY; Qiu XY; Zhong MK
    J Clin Pharm Ther; 2011 Oct; 36(5):614-24. PubMed ID: 21916909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of drug combination on tacrolimus target dose in renal transplant patients with different
    Zhang SF; Tang BH; Wei AH; Du Y; Guan ZW; Li Y
    Xenobiotica; 2022 Mar; 52(3):312-321. PubMed ID: 35395919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tacrolimus dose, blood concentrations and acute nephrotoxicity, but not CYP3A5/ABCB1 genetics, are associated with allograft tacrolimus concentrations in renal transplant recipients.
    Sallustio BC; Noll BD; Hu R; Barratt DT; Tuke J; Coller JK; Russ GR; Somogyi AA
    Br J Clin Pharmacol; 2021 Oct; 87(10):3901-3909. PubMed ID: 33646566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Markov chain model to evaluate the effect of CYP3A5 and ABCB1 polymorphisms on adverse events associated with tacrolimus in pediatric renal transplantation.
    Sy SK; Heuberger J; Shilbayeh S; Conrado DJ; Derendorf H
    AAPS J; 2013 Oct; 15(4):1189-99. PubMed ID: 23990505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age and CYP3A5 genotype affect tacrolimus dosing requirements after transplant in pediatric heart recipients.
    Gijsen V; Mital S; van Schaik RH; Soldin OP; Soldin SJ; van der Heiden IP; Nulman I; Koren G; de Wildt SN
    J Heart Lung Transplant; 2011 Dec; 30(12):1352-9. PubMed ID: 21930396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiologically-based pharmacokinetic modeling-guided rational combination of tacrolimus and voriconazole in patients with different CYP3A5 and CYP2C19 alleles.
    Gong F; Hu H; Ouyang Y; Liao ZZ; Kong Y; Hu JF; He H; Zhou Y
    Toxicol Appl Pharmacol; 2023 May; 466():116475. PubMed ID: 36931438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model based development of tacrolimus dosing algorithm considering CYP3A5 genotypes and mycophenolate mofetil drug interaction in stable kidney transplant recipients.
    Kim JH; Han N; Kim MG; Kim YW; Jang H; Yun HY; Yu MY; Kim IW; Kim YS; Oh JM
    Sci Rep; 2019 Aug; 9(1):11740. PubMed ID: 31409869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.