BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 37572298)

  • 1. CMMS-GCL: cross-modality metabolic stability prediction with graph contrastive learning.
    Du BX; Long Y; Li X; Wu M; Shi JY
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37572298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MS-BACL: enhancing metabolic stability prediction through bond graph augmentation and contrastive learning.
    Wang T; Li Z; Zhuo L; Chen Y; Fu X; Zou Q
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38555479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MLGL-MP: a Multi-Label Graph Learning framework enhanced by pathway interdependence for Metabolic Pathway prediction.
    Du BX; Zhao PC; Zhu B; Yiu SM; Nyamabo AK; Yu H; Shi JY
    Bioinformatics; 2022 Jun; 38(Suppl 1):i325-i332. PubMed ID: 35758801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pre-training graph neural networks for link prediction in biomedical networks.
    Long Y; Wu M; Liu Y; Fang Y; Kwoh CK; Chen J; Luo J; Li X
    Bioinformatics; 2022 Apr; 38(8):2254-2262. PubMed ID: 35171981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Similarity measures-based graph co-contrastive learning for drug-disease association prediction.
    Gao Z; Ma H; Zhang X; Wang Y; Wu Z
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37261859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting microbe-drug associations with structure-enhanced contrastive learning and self-paced negative sampling strategy.
    Tian Z; Yu Y; Fang H; Xie W; Guo M
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36715986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local structure-aware graph contrastive representation learning.
    Yang K; Liu Y; Zhao Z; Ding P; Zhao W
    Neural Netw; 2024 Apr; 172():106083. PubMed ID: 38182463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring ncRNA-Drug Sensitivity Associations Via Graph Contrastive Learning.
    Hu X; Jiang Y; Deng L
    IEEE/ACM Trans Comput Biol Bioinform; 2024 Apr; PP():. PubMed ID: 38578855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational framework for predicting novel drug indications using graph convolutional network with contrastive learning.
    Luo Y; Shan W; Peng L; Luo L; Ding P; Liang W
    IEEE J Biomed Health Inform; 2024 Apr; PP():. PubMed ID: 38607707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SGCLDGA: unveiling drug-gene associations through simple graph contrastive learning.
    Fan Y; Zhang C; Hu X; Huang Z; Xue J; Deng L
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38754409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting miRNA-disease association via graph attention learning and multiplex adaptive modality fusion.
    Jin Z; Wang M; Tang C; Zheng X; Zhang W; Sha X; An S
    Comput Biol Med; 2024 Feb; 169():107904. PubMed ID: 38181611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semi-supervised heterogeneous graph contrastive learning for drug-target interaction prediction.
    Yao K; Wang X; Li W; Zhu H; Jiang Y; Li Y; Tian T; Yang Z; Liu Q; Liu Q
    Comput Biol Med; 2023 Sep; 163():107199. PubMed ID: 37421738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A-GCL: Adversarial graph contrastive learning for fMRI analysis to diagnose neurodevelopmental disorders.
    Zhang S; Chen X; Shen X; Ren B; Yu Z; Yang H; Jiang X; Shen D; Zhou Y; Zhang XY
    Med Image Anal; 2023 Dec; 90():102932. PubMed ID: 37657365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IIFDTI: predicting drug-target interactions through interactive and independent features based on attention mechanism.
    Cheng Z; Zhao Q; Li Y; Wang J
    Bioinformatics; 2022 Sep; 38(17):4153-4161. PubMed ID: 35801934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GCFMCL: predicting miRNA-drug sensitivity using graph collaborative filtering and multi-view contrastive learning.
    Wei J; Zhuo L; Zhou Z; Lian X; Fu X; Yao X
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37427977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graph contextualized attention network for predicting synthetic lethality in human cancers.
    Long Y; Wu M; Liu Y; Zheng J; Kwoh CK; Luo J; Li X
    Bioinformatics; 2021 Aug; 37(16):2432-2440. PubMed ID: 33609108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A deep learning method for drug-target affinity prediction based on sequence interaction information mining.
    Jiang M; Shao Y; Zhang Y; Zhou W; Pang S
    PeerJ; 2023; 11():e16625. PubMed ID: 38099302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-view contrastive heterogeneous graph attention network for lncRNA-disease association prediction.
    Zhao X; Wu J; Zhao X; Yin M
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36528809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical graph transformer with contrastive learning for protein function prediction.
    Gu Z; Luo X; Chen J; Deng M; Lai L
    Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37369035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Affinity Uncertainty-Based Hard Negative Mining in Graph Contrastive Learning.
    Niu C; Pang G; Chen L
    IEEE Trans Neural Netw Learn Syst; 2024 Jan; PP():. PubMed ID: 38190684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.