These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37572302)

  • 21. Geometric graph learning with extended atom-types features for protein-ligand binding affinity prediction.
    Rana MM; Nguyen DD
    Comput Biol Med; 2023 Sep; 164():107250. PubMed ID: 37515872
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A New Hybrid Neural Network Deep Learning Method for Protein-Ligand Binding Affinity Prediction and De Novo Drug Design.
    Limbu S; Dakshanamurthy S
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430386
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative assessment of scoring functions on an updated benchmark: 1. Compilation of the test set.
    Li Y; Liu Z; Li J; Han L; Liu J; Zhao Z; Wang R
    J Chem Inf Model; 2014 Jun; 54(6):1700-16. PubMed ID: 24716849
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Iterative Knowledge-Based Scoring Function for Protein-Ligand Interactions by Considering Binding Affinity Information.
    Zhao X; Li H; Zhang K; Huang SY
    J Phys Chem B; 2023 Oct; 127(42):9021-9034. PubMed ID: 37822259
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new paradigm for applying deep learning to protein-ligand interaction prediction.
    Wang Z; Wang S; Li Y; Guo J; Wei Y; Mu Y; Zheng L; Li W
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38581420
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extended connectivity interaction features: improving binding affinity prediction through chemical description.
    Sánchez-Cruz N; Medina-Franco JL; Mestres J; Barril X
    Bioinformatics; 2021 Jun; 37(10):1376-1382. PubMed ID: 33226061
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Binding affinity prediction for protein-ligand complex using deep attention mechanism based on intermolecular interactions.
    Seo S; Choi J; Park S; Ahn J
    BMC Bioinformatics; 2021 Nov; 22(1):542. PubMed ID: 34749664
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A fully differentiable ligand pose optimization framework guided by deep learning and a traditional scoring function.
    Wang Z; Zheng L; Wang S; Lin M; Wang Z; Kong AW; Mu Y; Wei Y; Li W
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36502369
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Persistent Path-Spectral (PPS) Based Machine Learning for Protein-Ligand Binding Affinity Prediction.
    Liu R; Liu X; Wu J
    J Chem Inf Model; 2023 Feb; 63(3):1066-1075. PubMed ID: 36647267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DeepBSP-a Machine Learning Method for Accurate Prediction of Protein-Ligand Docking Structures.
    Bao J; He X; Zhang JZH
    J Chem Inf Model; 2021 May; 61(5):2231-2240. PubMed ID: 33979150
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Impact of Crystallographic Data for the Development of Machine Learning Models to Predict Protein-Ligand Binding Affinity.
    Veit-Acosta M; de Azevedo Junior WF
    Curr Med Chem; 2021 Oct; 28(34):7006-7022. PubMed ID: 33568025
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rescoring of docking poses under Occam's Razor: are there simpler solutions?
    Zhenin M; Bahia MS; Marcou G; Varnek A; Senderowitz H; Horvath D
    J Comput Aided Mol Des; 2018 Sep; 32(9):877-888. PubMed ID: 30173397
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SAnDReS 2.0: Development of machine-learning models to explore the scoring function space.
    de Azevedo WF; Quiroga R; Villarreal MA; da Silveira NJF; Bitencourt-Ferreira G; da Silva AD; Veit-Acosta M; Oliveira PR; Tutone M; Biziukova N; Poroikov V; Tarasova O; Baud S
    J Comput Chem; 2024 Oct; 45(27):2333-2346. PubMed ID: 38900052
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SCORCH: Improving structure-based virtual screening with machine learning classifiers, data augmentation, and uncertainty estimation.
    McGibbon M; Money-Kyrle S; Blay V; Houston DR
    J Adv Res; 2023 Apr; 46():135-147. PubMed ID: 35901959
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Empirical Scoring Functions for Affinity Prediction of Protein-ligand Complexes.
    Pason LP; Sotriffer CA
    Mol Inform; 2016 Dec; 35(11-12):541-548. PubMed ID: 27870243
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Beware of machine learning-based scoring functions-on the danger of developing black boxes.
    Gabel J; Desaphy J; Rognan D
    J Chem Inf Model; 2014 Oct; 54(10):2807-15. PubMed ID: 25207678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative Assessment of Scoring Functions: The CASF-2016 Update.
    Su M; Yang Q; Du Y; Feng G; Liu Z; Li Y; Wang R
    J Chem Inf Model; 2019 Feb; 59(2):895-913. PubMed ID: 30481020
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development and evaluation of a deep learning model for protein-ligand binding affinity prediction.
    Stepniewska-Dziubinska MM; Zielenkiewicz P; Siedlecki P
    Bioinformatics; 2018 Nov; 34(21):3666-3674. PubMed ID: 29757353
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking.
    Ballester PJ; Mitchell JB
    Bioinformatics; 2010 May; 26(9):1169-75. PubMed ID: 20236947
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dowker complex based machine learning (DCML) models for protein-ligand binding affinity prediction.
    Liu X; Feng H; Wu J; Xia K
    PLoS Comput Biol; 2022 Apr; 18(4):e1009943. PubMed ID: 35385478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.