These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 37572334)

  • 21. Molecular mechanism of allosteric communication in the human PPARalpha-RXRalpha heterodimer.
    Venäläinen T; Molnár F; Oostenbrink C; Carlberg C; Peräkylä M
    Proteins; 2010 Mar; 78(4):873-87. PubMed ID: 19847917
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of an Evolutionarily Conserved Allosteric Network in Steroid Receptors.
    Dube N; Khan SH; Sasse R; Okafor CD
    J Chem Inf Model; 2023 Jan; 63(2):571-582. PubMed ID: 36594606
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unraveling the Allosteric Cross-Talk between the Coactivator Peptide and the Ligand-Binding Site in the Glucocorticoid Receptor.
    La Sala G; Gunnarsson A; Edman K; Tyrchan C; Hogner A; Frolov AI
    J Chem Inf Model; 2021 Jul; 61(7):3667-3680. PubMed ID: 34156843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystal structure of the human LRH-1 DBD-DNA complex reveals Ftz-F1 domain positioning is required for receptor activity.
    Solomon IH; Hager JM; Safi R; McDonnell DP; Redinbo MR; Ortlund EA
    J Mol Biol; 2005 Dec; 354(5):1091-102. PubMed ID: 16289203
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential Modulation of Nuclear Receptor LRH-1 through Targeting Buried and Surface Regions of the Binding Pocket.
    Cato ML; Cornelison JL; Spurlin RM; Courouble VV; Patel AB; Flynn AR; Johnson AM; Okafor CD; Frank F; D'Agostino EH; Griffin PR; Jui NT; Ortlund EA
    J Med Chem; 2022 May; 65(9):6888-6902. PubMed ID: 35503419
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction between sterol regulatory element-binding proteins and liver receptor homolog-1 reciprocally suppresses their transcriptional activities.
    Kanayama T; Arito M; So K; Hachimura S; Inoue J; Sato R
    J Biol Chem; 2007 Apr; 282(14):10290-8. PubMed ID: 17283069
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Allosteric Binding Sites On Nuclear Receptors: Focus On Drug Efficacy and Selectivity.
    Fischer A; Smieško M
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31947677
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular dynamics simulations of human LRH-1: the impact of ligand binding in a constitutively active nuclear receptor.
    Burendahl S; Treuter E; Nilsson L
    Biochemistry; 2008 May; 47(18):5205-15. PubMed ID: 18410128
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ligand-induced shifts in conformational ensembles that describe transcriptional activation.
    Khan SH; Braet SM; Koehler SJ; Elacqua E; Anand GS; Okafor CD
    Elife; 2022 Oct; 11():. PubMed ID: 36222302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enantiomer-specific activities of an LRH-1 and SF-1 dual agonist.
    Mays SG; Stec J; Liu X; D'Agostino EH; Whitby RJ; Ortlund EA
    Sci Rep; 2020 Dec; 10(1):22279. PubMed ID: 33335203
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cooperativity between the orthosteric and allosteric ligand binding sites of RORγt.
    de Vries RMJM; Meijer FA; Doveston RG; Leijten-van de Gevel IA; Brunsveld L
    Proc Natl Acad Sci U S A; 2021 Feb; 118(6):. PubMed ID: 33536342
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular dynamics simulation study for LRH-1: interaction with fragments of SHP and function of phospholipid ligand.
    Zhang T; Zhou JH; Shi LW; Zhu RX; Chen MB
    Proteins; 2008 Mar; 70(4):1527-39. PubMed ID: 17910058
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Communication between the Ligand-Binding Pocket and the Activation Function-2 Domain of Androgen Receptor Revealed by Molecular Dynamics Simulations.
    Jin Y; Duan M; Wang X; Kong X; Zhou W; Sun H; Liu H; Li D; Yu H; Li Y; Hou T
    J Chem Inf Model; 2019 Feb; 59(2):842-857. PubMed ID: 30658039
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Promiscuity of Allosteric Regulation of Nuclear Receptors by Retinoid X Receptor.
    Clark AK; Wilder JH; Grayson AW; Johnson QR; Lindsay RJ; Nellas RB; Fernandez EJ; Shen T
    J Phys Chem B; 2016 Aug; 120(33):8338-45. PubMed ID: 27110634
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ligand control of coregulator recruitment to nuclear receptors.
    Nettles KW; Greene GL
    Annu Rev Physiol; 2005; 67():309-33. PubMed ID: 15709961
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural and biochemical basis for selective repression of the orphan nuclear receptor liver receptor homolog 1 by small heterodimer partner.
    Li Y; Choi M; Suino K; Kovach A; Daugherty J; Kliewer SA; Xu HE
    Proc Natl Acad Sci U S A; 2005 Jul; 102(27):9505-10. PubMed ID: 15976031
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure-based discovery of antagonists of nuclear receptor LRH-1.
    Benod C; Carlsson J; Uthayaruban R; Hwang P; Irwin JJ; Doak AK; Shoichet BK; Sablin EP; Fletterick RJ
    J Biol Chem; 2013 Jul; 288(27):19830-44. PubMed ID: 23667258
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Allosteric Pathways in the PPARγ-RXRα nuclear receptor complex.
    Ricci CG; Silveira RL; Rivalta I; Batista VS; Skaf MS
    Sci Rep; 2016 Jan; 6():19940. PubMed ID: 26823026
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Allosteric activation of metabotropic glutamate receptor 5.
    Jójárt B; Orgován Z; Márki Á; Pándy-Szekeres G; Ferenczy GG; Keserű GM
    J Biomol Struct Dyn; 2020 Jun; 38(9):2624-2632. PubMed ID: 31258022
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Liver receptor homolog-1 (LRH-1): a potential therapeutic target for cancer.
    Nadolny C; Dong X
    Cancer Biol Ther; 2015; 16(7):997-1004. PubMed ID: 25951367
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.