These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37572487)

  • 1. Formation of rice protein fibrils is highly sensitive to the different types of metal ions: Aggregation behavior and possible mechanisms.
    Qi X; Li Y; Shen M; Yu Q; Chen Y; Xie J
    Food Chem; 2024 Jan; 431():137101. PubMed ID: 37572487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation Effects of Fe
    Li Y; Yu Y; Ma G
    Molecules; 2022 Dec; 27(23):. PubMed ID: 36500474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bivalent metal ions induce formation of α-synuclein fibril polymorphs with different cytotoxicities.
    Atarod D; Mamashli F; Ghasemi A; Moosavi-Movahedi F; Pirhaghi M; Nedaei H; Muronetz V; Haertlé T; Tatzelt J; Riazi G; Saboury AA
    Sci Rep; 2022 Jul; 12(1):11898. PubMed ID: 35831343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zn(II)- and Cu(II)-induced non-fibrillar aggregates of amyloid-beta (1-42) peptide are transformed to amyloid fibrils, both spontaneously and under the influence of metal chelators.
    Tõugu V; Karafin A; Zovo K; Chung RS; Howells C; West AK; Palumaa P
    J Neurochem; 2009 Sep; 110(6):1784-95. PubMed ID: 19619132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. S100A6 amyloid fibril formation is calcium-modulated and enhances superoxide dismutase-1 (SOD1) aggregation.
    Botelho HM; Leal SS; Cardoso I; Yanamandra K; Morozova-Roche LA; Fritz G; Gomes CM
    J Biol Chem; 2012 Dec; 287(50):42233-42. PubMed ID: 23076148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of divalent copper, manganese and zinc ions on fibril nucleation and elongation of the amyloid-like yeast prion determinant Sup35p-NM.
    Suhre MH; Hess S; Golser AV; Scheibel T
    J Inorg Biochem; 2009 Dec; 103(12):1711-20. PubMed ID: 19853305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of exposing a critical hydrophobic patch on amyloidogenicity and fibril structure of insulin.
    Li Y; Huang L; Yang X; Wang C; Sun Y; Gong H; Liu Y; Zheng L; Huang K
    Biochem Biophys Res Commun; 2013 Oct; 440(1):56-61. PubMed ID: 24041697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibrillar oligomers nucleate the oligomerization of monomeric amyloid beta but do not seed fibril formation.
    Wu JW; Breydo L; Isas JM; Lee J; Kuznetsov YG; Langen R; Glabe C
    J Biol Chem; 2010 Feb; 285(9):6071-9. PubMed ID: 20018889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper(II) inhibits in vitro conversion of prion protein into amyloid fibrils.
    Bocharova OV; Breydo L; Salnikov VV; Baskakov IV
    Biochemistry; 2005 May; 44(18):6776-87. PubMed ID: 15865423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal ions affect the formation and stability of amyloid β aggregates at multiple length scales.
    Lee M; Kim JI; Na S; Eom K
    Phys Chem Chem Phys; 2018 Mar; 20(13):8951-8961. PubMed ID: 29557445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimodal Spectroscopic Study of Amyloid Fibril Polymorphism.
    VandenAkker CC; Schleeger M; Bruinen AL; Deckert-Gaudig T; Velikov KP; Heeren RM; Deckert V; Bonn M; Koenderink GH
    J Phys Chem B; 2016 Sep; 120(34):8809-17. PubMed ID: 27487391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the inhibitory effects of zinc ions on amyloid fibril formation of hen egg-white lysozyme.
    Ma B; Zhang F; Wang X; Zhu X
    Int J Biol Macromol; 2017 May; 98():717-722. PubMed ID: 28163126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. α-Synuclein aggregation at low concentrations.
    Afitska K; Fucikova A; Shvadchak VV; Yushchenko DA
    Biochim Biophys Acta Proteins Proteom; 2019; 1867(7-8):701-709. PubMed ID: 31096048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymorphic Aβ42 fibrils adopt similar secondary structure but differ in cross-strand side chain stacking interactions within the same β-sheet.
    Wang H; Duo L; Hsu F; Xue C; Lee YK; Guo Z
    Sci Rep; 2020 Mar; 10(1):5720. PubMed ID: 32235842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular structures of amyloid and prion fibrils: consensus versus controversy.
    Tycko R; Wickner RB
    Acc Chem Res; 2013 Jul; 46(7):1487-96. PubMed ID: 23294335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutational analysis of designed peptides that undergo structural transition from alpha helix to beta sheet and amyloid fibril formation.
    Takahashi Y; Ueno A; Mihara H
    Structure; 2000 Sep; 8(9):915-25. PubMed ID: 10986459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH-dependent amyloid and protofibril formation by the ABri peptide of familial British dementia.
    Srinivasan R; Jones EM; Liu K; Ghiso J; Marchant RE; Zagorski MG
    J Mol Biol; 2003 Nov; 333(5):1003-23. PubMed ID: 14583196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amyloid fibril formation from full-length and fragments of amylin.
    Goldsbury C; Goldie K; Pellaud J; Seelig J; Frey P; Müller SA; Kistler J; Cooper GJ; Aebi U
    J Struct Biol; 2000 Jun; 130(2-3):352-62. PubMed ID: 10940238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.