BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37572670)

  • 1. A peroxiredoxin-P38 MAPK scaffold increases MAPK activity by MAP3K-independent mechanisms.
    Cao M; Day AM; Galler M; Latimer HR; Byrne DP; Foy TW; Dwyer E; Bennett E; Palmer J; Morgan BA; Eyers PA; Veal EA
    Mol Cell; 2023 Sep; 83(17):3140-3154.e7. PubMed ID: 37572670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells.
    Jarvis RM; Hughes SM; Ledgerwood EC
    Free Radic Biol Med; 2012 Oct; 53(7):1522-30. PubMed ID: 22902630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A role for peroxiredoxins in H
    Barata AG; Dick TP
    Redox Biol; 2020 Jan; 28():101340. PubMed ID: 31629169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An unexplored role for Peroxiredoxin in exercise-induced redox signalling?
    Wadley AJ; Aldred S; Coles SJ
    Redox Biol; 2016 Aug; 8():51-8. PubMed ID: 26748042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac peroxiredoxins undergo complex modifications during cardiac oxidant stress.
    Schröder E; Brennan JP; Eaton P
    Am J Physiol Heart Circ Physiol; 2008 Jul; 295(1):H425-33. PubMed ID: 18502910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peroxiredoxin 1 and its role in cell signaling.
    Neumann CA; Cao J; Manevich Y
    Cell Cycle; 2009 Dec; 8(24):4072-8. PubMed ID: 19923889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Redox-Sensitive Thiol in Wis1 Modulates the Fission Yeast Mitogen-Activated Protein Kinase Response to H
    Sjölander JJ; Tarczykowska A; Picazo C; Cossio I; Redwan IN; Gao C; Solano C; Toledano MB; Grøtli M; Molin M; Sunnerhagen P
    Mol Cell Biol; 2020 Mar; 40(7):. PubMed ID: 31932483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. H
    Nelson KJ; Bolduc JA; Wu H; Collins JA; Burke EA; Reisz JA; Klomsiri C; Wood ST; Yammani RR; Poole LB; Furdui CM; Loeser RF
    J Biol Chem; 2018 Oct; 293(42):16376-16389. PubMed ID: 30190325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peroxiredoxin-1 of macrophage is critical for mycobacterial infection and is controlled by early secretory antigenic target protein through the activation of p38 MAPK.
    Yabaji SM; Mishra AK; Chatterjee A; Dubey RK; Srivastava K; Srivastava KK
    Biochem Biophys Res Commun; 2017 Dec; 494(3-4):433-439. PubMed ID: 29032183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C-terminal truncation of the peroxiredoxin Tpx1 decreases its sensitivity for hydrogen peroxide without compromising its role in signal transduction.
    Jara M; Vivancos AP; Hidalgo E
    Genes Cells; 2008 Feb; 13(2):171-9. PubMed ID: 18233959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential Kinetics of Two-Cysteine Peroxiredoxin Disulfide Formation Reveal a Novel Model for Peroxide Sensing.
    Portillo-Ledesma S; Randall LM; Parsonage D; Dalla Rizza J; Karplus PA; Poole LB; Denicola A; Ferrer-Sueta G
    Biochemistry; 2018 Jun; 57(24):3416-3424. PubMed ID: 29553725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graded Response of the Multifunctional 2-Cysteine Peroxiredoxin, CgPrx, to Increasing Levels of Hydrogen Peroxide in Corynebacterium glutamicum.
    Si M; Wang T; Pan J; Lin J; Chen C; Wei Y; Lu Z; Wei G; Shen X
    Antioxid Redox Signal; 2017 Jan; 26(1):1-14. PubMed ID: 27324811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modifying the resolving cysteine affects the structure and hydrogen peroxide reactivity of peroxiredoxin 2.
    Peskin AV; Meotti FC; Kean KM; Göbl C; Peixoto AS; Pace PE; Horne CR; Heath SG; Crowther JM; Dobson RCJ; Karplus PA; Winterbourn CC
    J Biol Chem; 2021; 296():100494. PubMed ID: 33667550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification of reversibly oxidized proteins (PROP) reveals a redox switch controlling p38 MAP kinase activity.
    Templeton DJ; Aye MS; Rady J; Xu F; Cross JV
    PLoS One; 2010 Nov; 5(11):e15012. PubMed ID: 21085594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peroxiredoxin 1 knockdown potentiates β-lapachone cytotoxicity through modulation of reactive oxygen species and mitogen-activated protein kinase signals.
    He T; Banach-Latapy A; Vernis L; Dardalhon M; Chanet R; Huang ME
    Carcinogenesis; 2013 Apr; 34(4):760-9. PubMed ID: 23239746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin.
    Biteau B; Labarre J; Toledano MB
    Nature; 2003 Oct; 425(6961):980-4. PubMed ID: 14586471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fission yeast Schizosaccharomyces pombe as a model to understand how peroxiredoxins influence cell responses to hydrogen peroxide.
    Veal EA; Tomalin LE; Morgan BA; Day AM
    Biochem Soc Trans; 2014 Aug; 42(4):909-16. PubMed ID: 25109978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peroxiredoxins in Regulation of MAPK Signalling Pathways; Sensors and Barriers to Signal Transduction.
    Latimer HR; Veal EA
    Mol Cells; 2016 Jan; 39(1):40-5. PubMed ID: 26813660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The architecture of redox microdomains: Cascading gradients and peroxiredoxins' redox-oligomeric coupling integrate redox signaling and antioxidant protection.
    Griffith M; Araújo A; Travasso R; Salvador A
    Redox Biol; 2024 Feb; 69():103000. PubMed ID: 38150990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Roles of Peroxiredoxin and Thioredoxin in Hydrogen Peroxide Sensing and in Signal Transduction.
    Netto LE; Antunes F
    Mol Cells; 2016 Jan; 39(1):65-71. PubMed ID: 26813662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.