These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37572768)

  • 1. TMH Stab-pred: Predicting the stability of α-helical membrane proteins using sequence and structural features.
    Ramakrishna Reddy P; Kulandaisamy A; Michael Gromiha M
    Methods; 2023 Oct; 218():118-124. PubMed ID: 37572768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PDA-Pred: Predicting the binding affinity of protein-DNA complexes using machine learning techniques and structural features.
    Harini K; Kihara D; Michael Gromiha M
    Methods; 2023 May; 213():10-17. PubMed ID: 36924867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MPTherm-pred: Analysis and Prediction of Thermal Stability Changes upon Mutations in Transmembrane Proteins.
    Kulandaisamy A; Zaucha J; Frishman D; Gromiha MM
    J Mol Biol; 2021 May; 433(11):166646. PubMed ID: 32920050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MPA-Pred: A machine learning approach for predicting the binding affinity of membrane protein-protein complexes.
    Ridha F; Gromiha MM
    Proteins; 2024 Apr; 92(4):499-508. PubMed ID: 37949651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PRA-Pred: Structure-based prediction of protein-RNA binding affinity.
    Harini K; Sekijima M; Gromiha MM
    Int J Biol Macromol; 2024 Feb; 259(Pt 2):129490. PubMed ID: 38224813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-stage model of helical membrane protein folding: Role of membrane-water interface as the intermediate stage vestibule for TM helices during their in membrano assembly.
    Kawamala BK; Abrol R
    Biochem Biophys Res Commun; 2022 Oct; 624():1-7. PubMed ID: 35926384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TMSEG: Novel prediction of transmembrane helices.
    Bernhofer M; Kloppmann E; Reeb J; Rost B
    Proteins; 2016 Nov; 84(11):1706-1716. PubMed ID: 27566436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of protein-carbohydrate complex binding affinity using structural features.
    Siva Shanmugam NR; Jino Blessy J; Veluraja K; Gromiha MM
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ProAffiMuSeq: sequence-based method to predict the binding free energy change of protein-protein complexes upon mutation using functional classification.
    Jemimah S; Sekijima M; Gromiha MM
    Bioinformatics; 2020 Mar; 36(6):1725-1730. PubMed ID: 31713585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of change in protein unfolding rates upon point mutations in two state proteins.
    Chaudhary P; Naganathan AN; Gromiha MM
    Biochim Biophys Acta; 2016 Sep; 1864(9):1104-1109. PubMed ID: 27264959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PCA-MutPred: Prediction of Binding Free Energy Change Upon Missense Mutation in Protein-carbohydrate Complexes.
    Siva Shanmugam NR; Veluraja K; Michael Gromiha M
    J Mol Biol; 2022 Jun; 434(11):167526. PubMed ID: 35662456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate Prediction of Contact Numbers for Multi-Spanning Helical Membrane Proteins.
    Li B; Mendenhall J; Nguyen ED; Weiner BE; Fischer AW; Meiler J
    J Chem Inf Model; 2016 Feb; 56(2):423-34. PubMed ID: 26804342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic measurements of bilayer insertion of a single transmembrane helix chaperoned by fluorinated surfactants.
    Kyrychenko A; Rodnin MV; Posokhov YO; Holt A; Pucci B; Killian JA; Ladokhin AS
    J Mol Biol; 2012 Feb; 416(3):328-34. PubMed ID: 22227387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidating the folding problem of helical peptides using empirical parameters. II. Helix macrodipole effects and rational modification of the helical content of natural peptides.
    Muñoz V; Serrano L
    J Mol Biol; 1995 Jan; 245(3):275-96. PubMed ID: 7844817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topology Prediction Improvement of α-helical Transmembrane Proteins Through Helix-tail Modeling and Multiscale Deep Learning Fusion.
    Feng SH; Zhang WX; Yang J; Yang Y; Shen HB
    J Mol Biol; 2020 Feb; 432(4):1279-1296. PubMed ID: 31870850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MemBrain: improving the accuracy of predicting transmembrane helices.
    Shen H; Chou JJ
    PLoS One; 2008 Jun; 3(6):e2399. PubMed ID: 18545655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing transmembrane alpha-helices that insert spontaneously.
    Wimley WC; White SH
    Biochemistry; 2000 Apr; 39(15):4432-42. PubMed ID: 10757993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TMbed: transmembrane proteins predicted through language model embeddings.
    Bernhofer M; Rost B
    BMC Bioinformatics; 2022 Aug; 23(1):326. PubMed ID: 35941534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strength of Calpha-H...O=C hydrogen bonds in transmembrane proteins.
    Park H; Yoon J; Seok C
    J Phys Chem B; 2008 Jan; 112(3):1041-8. PubMed ID: 18154287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamics-Based Molecular Modeling of α-Helices in Membranes and Micelles.
    Lomize AL; Schnitzer KA; Todd SC; Pogozheva ID
    J Chem Inf Model; 2021 Jun; 61(6):2884-2896. PubMed ID: 34029472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.