BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37572790)

  • 21. Deep proteome coverage based on ribosome profiling aids mass spectrometry-based protein and peptide discovery and provides evidence of alternative translation products and near-cognate translation initiation events.
    Menschaert G; Van Criekinge W; Notelaers T; Koch A; Crappé J; Gevaert K; Van Damme P
    Mol Cell Proteomics; 2013 Jul; 12(7):1780-90. PubMed ID: 23429522
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GWIPS-viz as a tool for exploring ribosome profiling evidence supporting the synthesis of alternative proteoforms.
    Michel AM; Ahern AM; Donohue CA; Baranov PV
    Proteomics; 2015 Jul; 15(14):2410-6. PubMed ID: 25736862
    [TBL] [Abstract][Full Text] [Related]  

  • 23. REPARATION: ribosome profiling assisted (re-)annotation of bacterial genomes.
    Ndah E; Jonckheere V; Giess A; Valen E; Menschaert G; Van Damme P
    Nucleic Acids Res; 2017 Nov; 45(20):e168. PubMed ID: 28977509
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unraveling the small proteome of the plant symbiont
    Hadjeras L; Heiniger B; Maaß S; Scheuer R; Gelhausen R; Azarderakhsh S; Barth-Weber S; Backofen R; Becher D; Ahrens CH; Sharma CM; Evguenieva-Hackenberg E
    Microlife; 2023; 4():uqad012. PubMed ID: 37223733
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of software packages for detecting unannotated translated small open reading frames by Ribo-seq.
    Tong G; Hah N; Martinez TF
    bioRxiv; 2023 Dec; ():. PubMed ID: 38234848
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trips-Viz: an environment for the analysis of public and user-generated ribosome profiling data.
    Kiniry SJ; Judge CE; Michel AM; Baranov PV
    Nucleic Acids Res; 2021 Jul; 49(W1):W662-W670. PubMed ID: 33950201
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Common and phylogenetically widespread coding for peptides by bacterial small RNAs.
    Friedman RC; Kalkhof S; Doppelt-Azeroual O; Mueller SA; Chovancová M; von Bergen M; Schwikowski B
    BMC Genomics; 2017 Jul; 18(1):553. PubMed ID: 28732463
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thousands of novel translated open reading frames in humans inferred by ribosome footprint profiling.
    Raj A; Wang SH; Shim H; Harpak A; Li YI; Engelmann B; Stephens M; Gilad Y; Pritchard JK
    Elife; 2016 May; 5():. PubMed ID: 27232982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved super-resolution ribosome profiling reveals prevalent translation of upstream ORFs and small ORFs in Arabidopsis.
    Wu HL; Ai Q; Teixeira RT; Nguyen PHT; Song G; Montes C; Elmore JM; Walley JW; Hsu PY
    Plant Cell; 2024 Feb; 36(3):510-539. PubMed ID: 38000896
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-Time Search-Assisted Multiplexed Quantitative Proteomics Reveals System-Wide Translational Regulation of Non-Canonical Short Open Reading Frames.
    Kozuka-Hata H; Hiroki T; Miyamura N; Kitamura A; Tsumoto K; Inoue JI; Oyama M
    Biomolecules; 2023 Jun; 13(6):. PubMed ID: 37371559
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of novel translated small ORFs in
    Stringer A; Smith C; Mangano K; Wade JT
    J Bacteriol; 2021 Jan; 204(1):JB0035221. PubMed ID: 34662240
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Refinement of
    Sánchez-Salvador A; González-de la Fuente S; Aguado B; Yates PA; Requena JM
    Genes (Basel); 2023 Aug; 14(8):. PubMed ID: 37628688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. smORFer: a modular algorithm to detect small ORFs in prokaryotes.
    Bartholomäus A; Kolte B; Mustafayeva A; Goebel I; Fuchs S; Benndorf D; Engelmann S; Ignatova Z
    Nucleic Acids Res; 2021 Sep; 49(15):e89. PubMed ID: 34125903
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ribosome Profiling of Plants.
    Sonia J; Kanodia P; Lozier Z; Miller WA
    Methods Mol Biol; 2024; 2724():139-163. PubMed ID: 37987904
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Observation of dually decoded regions of the human genome using ribosome profiling data.
    Michel AM; Choudhury KR; Firth AE; Ingolia NT; Atkins JF; Baranov PV
    Genome Res; 2012 Nov; 22(11):2219-29. PubMed ID: 22593554
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Developmental regulation of canonical and small ORF translation from mRNAs.
    Patraquim P; Mumtaz MAS; Pueyo JI; Aspden JL; Couso JP
    Genome Biol; 2020 May; 21(1):128. PubMed ID: 32471506
    [TBL] [Abstract][Full Text] [Related]  

  • 37. De novo Identification of Actively Translated Open Reading Frames with Ribosome Profiling Data.
    Zhu Y; Li F; Yang X; Xiao Z
    J Vis Exp; 2022 Feb; (180):. PubMed ID: 35253791
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved Ribo-seq enables identification of cryptic translation events.
    Erhard F; Halenius A; Zimmermann C; L'Hernault A; Kowalewski DJ; Weekes MP; Stevanovic S; Zimmer R; Dölken L
    Nat Methods; 2018 May; 15(5):363-366. PubMed ID: 29529017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. HRPDviewer: human ribosome profiling data viewer.
    Wu WS; Jiang YX; Chang JW; Chu YH; Chiu YH; Tsao YH; Nordling TEM; Tseng YY; Tseng JT
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 30010738
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of Translation Start Sites in Bacterial Genomes.
    Meydan S; Klepacki D; Mankin AS; Vázquez-Laslop N
    Methods Mol Biol; 2021; 2252():27-55. PubMed ID: 33765270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.