BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37573031)

  • 21. Facile preparation of melamine foam with superhydrophobic performance and its system integration with prototype equipment for the clean-up of oil spills on water surface.
    Mu L; Yue X; Hao B; Wang R; Ma PC
    Sci Total Environ; 2022 Aug; 833():155184. PubMed ID: 35417731
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of coin-shaped ZIF-7 functionalized superhydrophobic polysulfone composite foams for continuous removal of oily contaminants from water.
    Lu Y; Li S; Chen F; Ma H; Gao C; Xue L
    J Hazard Mater; 2022 Jan; 421():126788. PubMed ID: 34364204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient oil-water separation coating with robust superhydrophobicity and high transparency.
    Chen B; Zhang R; Fu H; Xu J; Jing Y; Xu G; Wang B; Hou X
    Sci Rep; 2022 Feb; 12(1):2187. PubMed ID: 35140302
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrospun frogspawn structured membrane for gravity-driven oil-water separation.
    Zhang M; Ma W; Wu S; Tang G; Cui J; Zhang Q; Chen F; Xiong R; Huang C
    J Colloid Interface Sci; 2019 Jul; 547():136-144. PubMed ID: 30952075
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of Superhydrophobic/Superoleophilic stearic acid and Polymer-modified magnetic polyurethane for Oil-Water Separation: Effect of polymeric nature.
    Satria M; Saleh TA
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):522-534. PubMed ID: 36174295
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A durable superhydrophobic porous polymer coated sponge for efficient separation of immiscible oil/water mixtures and oil-in-water emulsions.
    Gong L; Zhu H; Wu W; Lin D; Yang K
    J Hazard Mater; 2022 Mar; 425():127980. PubMed ID: 34883374
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In situ construction of green multiscale nanosilicon-based sponges for stable oil-water separation.
    Li Y; Zhou M; Li C; Han H; Tu H
    Environ Technol; 2024 Apr; 45(10):2000-2011. PubMed ID: 36548009
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil-water separation.
    Shang Y; Si Y; Raza A; Yang L; Mao X; Ding B; Yu J
    Nanoscale; 2012 Dec; 4(24):7847-54. PubMed ID: 23149675
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design of hydrophobic polyurethane-magnetite iron oxide-titanium dioxide nanocomposites for oil-water separation.
    Khandan Barani A; Roudini G; Barahuie F; Binti Masuri SU
    Heliyon; 2023 May; 9(5):e15580. PubMed ID: 37131442
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Magnetic, durable, and superhydrophobic polyurethane@Fe3O4@SiO2@fluoropolymer sponges for selective oil absorption and oil/water separation.
    Wu L; Li L; Li B; Zhang J; Wang A
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4936-46. PubMed ID: 25671386
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of superhydrophobic, green, and eco-friendly modified polylactic acid foams for separation oil from water.
    Gharehasanloo M; Anbia M; Yazdi F
    Int J Biol Macromol; 2023 Jun; 240():124159. PubMed ID: 37003394
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mussel-Inspired Durable TiO
    He Z; Wu H; Shi Z; Gao X; Sun Y; Liu X
    Langmuir; 2022 May; 38(19):6086-6098. PubMed ID: 35504860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Scalable Fabrication of Superhydrophobic Coating with Rough Coral Reef-Like Structures for Efficient Self-Cleaning and Oil-Water Separation: An Experimental and Molecular Dynamics Simulation Study.
    Cai H; Duan C; Fu M; Zhang J; Huang H; Hu Y; Shi J; Ye D
    Small; 2023 Aug; 19(32):e2207118. PubMed ID: 37058126
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Durable superhydrophobic/superoleophilic melamine foam based on biomass-derived porous carbon and multi-walled carbon nanotube for oil/water separation.
    Shayesteh H; Khosrowshahi MS; Mashhadimoslem H; Maleki F; Rabbani Y; Emrooz HBM
    Sci Rep; 2023 Mar; 13(1):4515. PubMed ID: 36934146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation.
    Li J; Kang R; Tang X; She H; Yang Y; Zha F
    Nanoscale; 2016 Apr; 8(14):7638-45. PubMed ID: 26987990
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneously achieving high-effective oil-water separation and filter media regeneration by facile and highly hydrophobic sand coating.
    Sun Y; Liu Y; Xu B; Chen J; Yuan W; Jiang C; Wang D; Wang H
    Sci Total Environ; 2021 Dec; 800():149488. PubMed ID: 34392226
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robust and durable superhydrophobic fabrics fabricated via simple Cu nanoparticles deposition route and its application in oil/water separation.
    Wang J; Wang H
    Mar Pollut Bull; 2017 Jun; 119(1):64-71. PubMed ID: 28341295
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of Superhydrophobic Coating Based on Waterborne Silicone-Modified Polyurethane Dispersion and Silica Nanoparticles.
    Liu H; Xiong H; Chang Y; Xu J; Xu C; Liu Y
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616372
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hot water-repellent and mechanically durable superhydrophobic mesh for oil/water separation.
    Cao M; Luo X; Ren H; Feng J
    J Colloid Interface Sci; 2018 Feb; 512():567-574. PubMed ID: 29100161
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gold nanoparticles modified graphene foam with superhydrophobicity and superoleophilicity for oil-water separation.
    Liu S; Wang S; Wang H; Lv C; Miao Y; Chen L; Yang S
    Sci Total Environ; 2021 Mar; 758():143660. PubMed ID: 33248768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.