BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 37573033)

  • 1. Redox-Responsive Polymeric Nanoparticle for Nucleic Acid Delivery and Cancer Therapy: Progress, Opportunities, and Challenges.
    Xu L; Cao Y; Xu Y; Li R; Xu X
    Macromol Biosci; 2024 Mar; 24(3):e2300238. PubMed ID: 37573033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery.
    Cheng R; Meng F; Deng C; Klok HA; Zhong Z
    Biomaterials; 2013 May; 34(14):3647-57. PubMed ID: 23415642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemistry of Lipid Nanoparticles for RNA Delivery.
    Eygeris Y; Gupta M; Kim J; Sahay G
    Acc Chem Res; 2022 Jan; 55(1):2-12. PubMed ID: 34850635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel free-paclitaxel-loaded redox-responsive nanoparticles based on a disulfide-linked poly(ethylene glycol)-drug conjugate for intracellular drug delivery: synthesis, characterization, and antitumor activity in vitro and in vivo.
    Chuan X; Song Q; Lin J; Chen X; Zhang H; Dai W; He B; Wang X; Zhang Q
    Mol Pharm; 2014 Oct; 11(10):3656-70. PubMed ID: 25208098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances and Challenges of Stimuli-Responsive Nucleic Acids Delivery System in Gene Therapy.
    Lin M; Qi X
    Pharmaceutics; 2023 May; 15(5):. PubMed ID: 37242692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-component bioresponsive nanoparticles for synchronous delivery of docetaxel and TUBB3 siRNA to lung cancer cells.
    Conte C; Monteiro PF; Gurnani P; Stolnik S; Ungaro F; Quaglia F; Clarke P; Grabowska A; Kavallaris M; Alexander C
    Nanoscale; 2021 Jul; 13(26):11414-11426. PubMed ID: 34160534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox-Responsive Nanoparticle-Mediated Systemic RNAi for Effective Cancer Therapy.
    Xu X; Wu J; Liu S; Saw PE; Tao W; Li Y; Krygsman L; Yegnasubramanian S; De Marzo AM; Shi J; Bieberich CJ; Farokhzad OC
    Small; 2018 Oct; 14(41):e1802565. PubMed ID: 30230235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An
    Powell LG; Alexander C; Stone V; Johnston HJ; Conte C
    RSC Adv; 2022 Apr; 12(20):12860-12870. PubMed ID: 35496338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smart polymeric nanoparticles with pH-responsive and PEG-detachable properties for co-delivering paclitaxel and survivin siRNA to enhance antitumor outcomes.
    Jin M; Jin G; Kang L; Chen L; Gao Z; Huang W
    Int J Nanomedicine; 2018; 13():2405-2426. PubMed ID: 29719390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumor-Acidity-Cleavable Maleic Acid Amide (TACMAA): A Powerful Tool for Designing Smart Nanoparticles To Overcome Delivery Barriers in Cancer Nanomedicine.
    Du JZ; Li HJ; Wang J
    Acc Chem Res; 2018 Nov; 51(11):2848-2856. PubMed ID: 30346728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox-responsive self-assembled polymeric nanoprodrug for delivery of gemcitabine in B-cell lymphoma therapy.
    Zhong W; Zhang X; Duan X; Liu H; Fang Y; Luo M; Fang Z; Miao C; Lin D; Wu J
    Acta Biomater; 2022 May; 144():67-80. PubMed ID: 35331940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimuli-Responsive Polymeric Nanoplatforms for Cancer Therapy.
    Chang D; Ma Y; Xu X; Xie J; Ju S
    Front Bioeng Biotechnol; 2021; 9():707319. PubMed ID: 34249894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cationic lipids, phosphatidylethanolamine and the intracellular delivery of polymeric, nucleic acid-based drugs (review).
    Hope MJ; Mui B; Ansell S; Ahkong QF
    Mol Membr Biol; 1998; 15(1):1-14. PubMed ID: 9595549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of long non-coding RNAs in cancer: From subcellular localization to nanoparticle-mediated targeted regulation.
    Wei C; Xu Y; Shen Q; Li R; Xiao X; Saw PE; Xu X
    Mol Ther Nucleic Acids; 2023 Sep; 33():774-793. PubMed ID: 37655045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responsive Nanocarriers as an Emerging Platform for Cascaded Delivery of Nucleic Acids to Cancer.
    Liu Y; Xu CF; Iqbal S; Yang XZ; Wang J
    Adv Drug Deliv Rev; 2017 Jun; 115():98-114. PubMed ID: 28396204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene Therapy Based on Nucleic Acid Nanostructure.
    Wu X; Wu T; Liu J; Ding B
    Adv Healthc Mater; 2020 Oct; 9(19):e2001046. PubMed ID: 32864890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox-Responsive Molecularly Imprinted Nanoparticles for Targeted Intracellular Delivery of Protein toward Cancer Therapy.
    Lu H; Xu S; Guo Z; Zhao M; Liu Z
    ACS Nano; 2021 Nov; 15(11):18214-18225. PubMed ID: 34664930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleic acid-based drugs for patients with solid tumours.
    Huayamares SG; Loughrey D; Kim H; Dahlman JE; Sorscher EJ
    Nat Rev Clin Oncol; 2024 Jun; 21(6):407-427. PubMed ID: 38589512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox-Responsive and Dual-Targeting Hyaluronic Acid-Methotrexate Prodrug Self-Assembling Nanoparticles for Enhancing Intracellular Drug Self-Delivery.
    Zhang Y; Li Y; Tian H; Zhu Q; Wang F; Fan Z; Zhou S; Wang X; Xie L; Hou Z
    Mol Pharm; 2019 Jul; 16(7):3133-3144. PubMed ID: 31198046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioreducible amino acid-derived polymeric nanoparticles for delivery of functional proteins.
    Kallar AR; Muthu J; Selvam S
    Colloids Surf B Biointerfaces; 2018 Apr; 164():396-405. PubMed ID: 29427946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.