These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37573519)

  • 1. Distributions of Visual Receptive Fields from Retinotopic to Craniotopic Coordinates in the Lateral Intraparietal Area and Frontal Eye Fields of the Macaque.
    Yang L; Jin M; Zhang C; Qian N; Zhang M
    Neurosci Bull; 2024 Feb; 40(2):171-181. PubMed ID: 37573519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beyond the labeled line: variation in visual reference frames from intraparietal cortex to frontal eye fields and the superior colliculus.
    Caruso VC; Pages DS; Sommer MA; Groh JM
    J Neurophysiol; 2018 Apr; 119(4):1411-1421. PubMed ID: 29357464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correction: Distributions of Visual Receptive Fields from Retinotopic to Craniotopic Coordinates in the Lateral Intraparietal Area and Frontal Eye Fields of the Macaque.
    Yang L; Jin M; Zhang C; Qian N; Zhang M
    Neurosci Bull; 2024 Jun; 40(6):855. PubMed ID: 38321348
    [No Abstract]   [Full Text] [Related]  

  • 4. Topography of supplementary eye field afferents to frontal eye field in macaque: implications for mapping between saccade coordinate systems.
    Schall JD; Morel A; Kaas JH
    Vis Neurosci; 1993; 10(2):385-93. PubMed ID: 7683486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compensating for a shifting world: evolving reference frames of visual and auditory signals across three multimodal brain areas.
    Caruso VC; Pages DS; Sommer MA; Groh JM
    J Neurophysiol; 2021 Jul; 126(1):82-94. PubMed ID: 33852803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of macaque lateral intraparietal area delays initiation of the second saccade predominantly from contralesional eye positions in a double-saccade task.
    Li CS; Andersen RA
    Exp Brain Res; 2001 Mar; 137(1):45-57. PubMed ID: 11310171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eye fields in the frontal lobes of primates.
    Tehovnik EJ; Sommer MA; Chou IH; Slocum WM; Schiller PH
    Brain Res Brain Res Rev; 2000 Apr; 32(2-3):413-48. PubMed ID: 10760550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parietal neurons encoding spatial locations in craniotopic coordinates.
    Galletti C; Battaglini PP; Fattori P
    Exp Brain Res; 1993; 96(2):221-9. PubMed ID: 8270019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams.
    Schall JD; Morel A; King DJ; Bullier J
    J Neurosci; 1995 Jun; 15(6):4464-87. PubMed ID: 7540675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonretinotopic visual processing in the brain.
    Melcher D; Morrone MC
    Vis Neurosci; 2015 Jan; 32():E017. PubMed ID: 26423219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eye-centered visual receptive fields in the ventral intraparietal area.
    Chen X; DeAngelis GC; Angelaki DE
    J Neurophysiol; 2014 Jul; 112(2):353-61. PubMed ID: 24790176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topography of projections to posterior cortical areas from the macaque frontal eye fields.
    Stanton GB; Bruce CJ; Goldberg ME
    J Comp Neurol; 1995 Mar; 353(2):291-305. PubMed ID: 7745137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Representation of the ipsilateral visual field by neurons in the macaque lateral intraparietal cortex depends on the forebrain commissures.
    Dunn CA; Colby CL
    J Neurophysiol; 2010 Nov; 104(5):2624-33. PubMed ID: 20660427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A spatial memory signal shows that the parietal cortex has access to a craniotopic representation of space.
    Semework M; Steenrod SC; Goldberg ME
    Elife; 2018 Feb; 7():. PubMed ID: 29451118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eye-centered, head-centered, and complex coding of visual and auditory targets in the intraparietal sulcus.
    Mullette-Gillman OA; Cohen YE; Groh JM
    J Neurophysiol; 2005 Oct; 94(4):2331-52. PubMed ID: 15843485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The roles of the lateral intraparietal area and frontal eye field in guiding eye movements in free viewing search behavior.
    Mirpour K; Bisley JW
    J Neurophysiol; 2021 Jun; 125(6):2144-2157. PubMed ID: 33949898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of visual receptive fields in the macaque frontal eye field.
    Mayo JP; DiTomasso AR; Sommer MA; Smith MA
    J Neurophysiol; 2015 Dec; 114(6):3201-10. PubMed ID: 26378208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity to full-field visual movement compatible with head rotation: variations with eye-in-head position.
    Harris LR; Lott LA
    Vis Neurosci; 1996; 13(2):277-82. PubMed ID: 8737278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dorsomedial frontal cortex of the rhesus monkey: topographic representation of saccades evoked by electrical stimulation.
    Tehovnik EJ; Lee K
    Exp Brain Res; 1993; 96(3):430-42. PubMed ID: 8299745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parietal representation of object-based saccades.
    Sabes PN; Breznen B; Andersen RA
    J Neurophysiol; 2002 Oct; 88(4):1815-29. PubMed ID: 12364508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.