These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 37573566)

  • 1. Agrobacterium-Mediated Transformation for the Development of Transgenic Crops; Present and Future Prospects.
    Rahman SU; Khan MO; Ullah R; Ahmad F; Raza G
    Mol Biotechnol; 2024 Aug; 66(8):1836-1852. PubMed ID: 37573566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas genome editing in plants: Dawn of Agrobacterium transformation for recalcitrant and transgene-free plants for future crop breeding.
    Antony Ceasar S; Ignacimuthu S
    Plant Physiol Biochem; 2023 Mar; 196():724-730. PubMed ID: 36812799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas: A powerful tool for gene function study and crop improvement.
    Zhang D; Zhang Z; Unver T; Zhang B
    J Adv Res; 2021 Mar; 29():207-221. PubMed ID: 33842017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome Editing in Brassica juncea Using CRISPR/Cas9 Technology.
    Ahmad N; Fatima S; Hundleby P; Mehboob-Ur-Rahman
    Methods Mol Biol; 2024; 2788():337-354. PubMed ID: 38656524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Agrobacterium tumefaciens-Mediated Plant Transformation: A Review.
    Azizi-Dargahlou S; Pouresmaeil M
    Mol Biotechnol; 2024 Jul; 66(7):1563-1580. PubMed ID: 37340198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agroinfiltration Mediated Scalable Transient Gene Expression in Genome Edited Crop Plants.
    Kaur M; Manchanda P; Kalia A; Ahmed FK; Nepovimova E; Kuca K; Abd-Elsalam KA
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639221
    [No Abstract]   [Full Text] [Related]  

  • 7. Generation of transgene-free PDS mutants in potato by Agrobacterium-mediated transformation.
    Bánfalvi Z; Csákvári E; Villányi V; Kondrák M
    BMC Biotechnol; 2020 May; 20(1):25. PubMed ID: 32398038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agrobacterium tumefaciens-Mediated Transformation of Rice by Hygromycin Phosphotransferase (hptII) Gene Containing CRISPR/Cas9 Vector.
    Majumder S; Datta K; Datta SK
    Methods Mol Biol; 2021; 2238():69-79. PubMed ID: 33471325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current and future editing reagent delivery systems for plant genome editing.
    Ran Y; Liang Z; Gao C
    Sci China Life Sci; 2017 May; 60(5):490-505. PubMed ID: 28527114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simplified and improved protocol of rice transformation to cater wide range of rice cultivars.
    Rengasamy B; Manna M; Jonwal S; Sathiyabama M; Thajuddin NB; Sinha AK
    Protoplasma; 2024 Jul; 261(4):641-654. PubMed ID: 38217739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishment of an Agrobacterium-mediated genetic transformation and CRISPR/Cas9-mediated targeted mutagenesis in Hemp (Cannabis Sativa L.).
    Zhang X; Xu G; Cheng C; Lei L; Sun J; Xu Y; Deng C; Dai Z; Yang Z; Chen X; Liu C; Tang Q; Su J
    Plant Biotechnol J; 2021 Oct; 19(10):1979-1987. PubMed ID: 33960612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing a flexible, high-efficiency Agrobacterium-mediated sorghum transformation system with broad application.
    Che P; Anand A; Wu E; Sander JD; Simon MK; Zhu W; Sigmund AL; Zastrow-Hayes G; Miller M; Liu D; Lawit SJ; Zhao ZY; Albertsen MC; Jones TJ
    Plant Biotechnol J; 2018 Jul; 16(7):1388-1395. PubMed ID: 29327444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agrobacterium-mediated delivery of CRISPR/Cas reagents for genome editing in plants enters an era of ternary vector systems.
    Zhang Y; Zhang Q; Chen QJ
    Sci China Life Sci; 2020 Oct; 63(10):1491-1498. PubMed ID: 32279281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas9-Based Gene Editing in Soybean.
    Bao A; Tran LP; Cao D
    Methods Mol Biol; 2020; 2107():349-364. PubMed ID: 31893458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advancing Agrobacterium-Based Crop Transformation and Genome Modification Technology for Agricultural Biotechnology.
    Anand A; Jones TJ
    Curr Top Microbiol Immunol; 2018; 418():489-507. PubMed ID: 29959543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome Editing of Rice by CRISPR-Cas: End-to-End Pipeline for Crop Improvement.
    Das A; Ghana P; Rudrappa B; Gandhi R; Tavva VS; Mohanty A
    Methods Mol Biol; 2021; 2238():115-134. PubMed ID: 33471328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plastid Transformation: How Does it Work? Can it Be Applied to Crops? What Can it Offer?
    Yu Y; Yu PC; Chang WJ; Yu K; Lin CS
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32659946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene Assembly in Agrobacterium via Nucleic Acid Transfer Using Recombinase Technology (GAANTRY).
    Hathwaik LT; Thomson JG; Thilmony R
    Methods Mol Biol; 2021; 2238():3-17. PubMed ID: 33471321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops.
    Singh RK; Prasad M
    Protoplasma; 2016 May; 253(3):691-707. PubMed ID: 26660352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protocol for Agrobacterium-Mediated Transformation and Transgenic Plant Production of Switchgrass.
    Chen Q; Song GQ
    Methods Mol Biol; 2019; 1864():105-115. PubMed ID: 30415332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.