These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37573788)

  • 1. Effects of iron oxide nanoparticles (Fe
    Kreslavski VD; Shmarev AN; Ivanov AA; Zharmukhamedov SK; Strokina V; Kosobryukhov A; Yu M; Allakhverdiev SI; Shabala S
    Funct Plant Biol; 2023 Nov; 50(11):932-940. PubMed ID: 37573788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Iron Oxide Nanoparticles (Fe
    Feng Y; Kreslavski VD; Shmarev AN; Ivanov AA; Zharmukhamedov SK; Kosobryukhov A; Yu M; Allakhverdiev SI; Shabala S
    Plants (Basel); 2022 Jul; 11(14):. PubMed ID: 35890527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of copper oxide and zinc oxide nanoparticles on photosynthesis and physiology of Raphanus sativus L. under salinity stress.
    Mahawar L; Živčák M; Barboricova M; Kovár M; Filaček A; Ferencova J; Vysoká DM; Brestič M
    Plant Physiol Biochem; 2024 Jan; 206():108281. PubMed ID: 38157834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyvinylpyrrolidone-coated copper nanoparticles dose-dependently conferred tolerance to wheat under salinity and/or drought stress by improving photochemical activity and antioxidant system.
    Ekim R; Arikan B; Alp-Turgut FN; Koyukan B; Ozfidan-Konakci C; Yildiztugay E
    Environ Res; 2024 Jan; 241():117681. PubMed ID: 37984786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gel-free/label-free proteomic analysis of wheat shoot in stress tolerant varieties under iron nanoparticles exposure.
    Yasmeen F; Raja NI; Razzaq A; Komatsu S
    Biochim Biophys Acta; 2016 Nov; 1864(11):1586-98. PubMed ID: 27530299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength.
    Penella C; Landi M; Guidi L; Nebauer SG; Pellegrini E; San Bautista A; Remorini D; Nali C; López-Galarza S; Calatayud A
    J Plant Physiol; 2016 Apr; 193():1-11. PubMed ID: 26918569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative efficacy of silicon and iron oxide nanoparticles towards improving the plant growth and mitigating arsenic toxicity in wheat (Triticum aestivum L.).
    Manzoor N; Ali L; Al-Huqail AA; Alghanem SMS; Al-Haithloul HAS; Abbas T; Chen G; Huan L; Liu Y; Wang G
    Ecotoxicol Environ Saf; 2023 Oct; 264():115382. PubMed ID: 37619453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of wheat (Triticum aestivum) plants grown in a Cd contaminated soil to the application of iron oxide nanoparticles.
    Hussain A; Ali S; Rizwan M; Rehman MZU; Qayyum MF; Wang H; Rinklebe J
    Ecotoxicol Environ Saf; 2019 May; 173():156-164. PubMed ID: 30771659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron oxide nanoparticles ameliorated the cadmium and salinity stresses in wheat plants, facilitating photosynthetic pigments and restricting cadmium uptake.
    Manzoor N; Ahmed T; Noman M; Shahid M; Nazir MM; Ali L; Alnusaire TS; Li B; Schulin R; Wang G
    Sci Total Environ; 2021 May; 769():145221. PubMed ID: 33736258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triticum aestivum: antioxidant gene profiling and morpho-physiological studies under salt stress.
    Ramzan M; Gillani M; Shah AA; Shah AN; Kauser N; Jamil M; Ahmad RT; Ullah S
    Mol Biol Rep; 2023 Mar; 50(3):2569-2580. PubMed ID: 36626063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exogenous Application of Green Titanium Dioxide Nanoparticles (TiO
    Mustafa N; Raja NI; Ilyas N; Abasi F; Ahmad MS; Ehsan M; Mehak A; Badshah I; Proćków J
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35956833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of gibberellic acid on growth, photosynthesis and antioxidant defense system of wheat under zinc oxide nanoparticle stress.
    Iftikhar A; Ali S; Yasmeen T; Arif MS; Zubair M; Rizwan M; Alhaithloul HAS; Alayafi AAM; Soliman MH
    Environ Pollut; 2019 Nov; 254(Pt B):113109. PubMed ID: 31487671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in physiological and biochemical characteristics in response to single and combined drought and salinity stresses between wheat genotypes differing in salt tolerance.
    Dugasa MT; Cao F; Ibrahim W; Wu F
    Physiol Plant; 2019 Feb; 165(2):134-143. PubMed ID: 29635753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potassium and zinc increase tolerance to salt stress in wheat (Triticum aestivum L.).
    Jan AU; Hadi F; Midrarullah ; Nawaz MA; Rahman K
    Plant Physiol Biochem; 2017 Jul; 116():139-149. PubMed ID: 28558283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K
    Liu J; Li G; Chen L; Gu J; Wu H; Li Z
    J Nanobiotechnology; 2021 May; 19(1):153. PubMed ID: 34034767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipoic acid mitigates oxidative stress and recovers metabolic distortions in salt-stressed wheat seedlings by modulating ion homeostasis, the osmo-regulator level and antioxidant system.
    Gorcek Z; Erdal S
    J Sci Food Agric; 2015 Nov; 95(14):2811-7. PubMed ID: 25427940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zinc oxide nanoparticles alleviates the adverse effects of cadmium stress on Oryza sativa via modulation of the photosynthesis and antioxidant defense system.
    Faizan M; Bhat JA; Hessini K; Yu F; Ahmad P
    Ecotoxicol Environ Saf; 2021 Sep; 220():112401. PubMed ID: 34118747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen availability prevents oxidative effects of salinity on wheat growth and photosynthesis by up-regulating the antioxidants and osmolytes metabolism, and secondary metabolite accumulation.
    Ahanger MA; Qin C; Begum N; Maodong Q; Dong XX; El-Esawi M; El-Sheikh MA; Alatar AA; Zhang L
    BMC Plant Biol; 2019 Nov; 19(1):479. PubMed ID: 31703619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic, not the osmotic component, is responsible for the salinity-induced inhibition of greening in etiolated wheat (Triticum aestivum L. cv. Mv Béres) leaves: a comparative study.
    Sóti A; Ounoki R; Kósa A; Mysliwa-Kurdziel B; Sárvári É; Solymosi K
    Planta; 2023 Oct; 258(5):102. PubMed ID: 37861810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of concentrations of sodium chloride on photosynthesis, antioxidative enzymes, growth and fiber yield of hybrid ramie.
    Huang C; Wei G; Jie Y; Wang L; Zhou H; Ran C; Huang Z; Jia H; Anjum SA
    Plant Physiol Biochem; 2014 Mar; 76():86-93. PubMed ID: 24486583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.