These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 37573815)

  • 21. Perspective: the essential role of NMR in the discovery and characterization of intrinsically disordered proteins.
    Dyson HJ; Wright PE
    J Biomol NMR; 2019 Dec; 73(12):651-659. PubMed ID: 31617035
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and Dynamics of Intrinsically Disordered Proteins.
    Fu B; Vendruscolo M
    Adv Exp Med Biol; 2015; 870():35-48. PubMed ID: 26387099
    [TBL] [Abstract][Full Text] [Related]  

  • 23.
    Dubey A; Viennet T; Chhabra S; Takeuchi K; Seo HC; Bermel W; Frueh DP; Arthanari H
    Chem Commun (Camb); 2022 Aug; 58(68):9512-9515. PubMed ID: 35920752
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computing, Analyzing, and Comparing the Radius of Gyration and Hydrodynamic Radius in Conformational Ensembles of Intrinsically Disordered Proteins.
    Ahmed MC; Crehuet R; Lindorff-Larsen K
    Methods Mol Biol; 2020; 2141():429-445. PubMed ID: 32696370
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of NMR to studies of intrinsically disordered proteins.
    Gibbs EB; Cook EC; Showalter SA
    Arch Biochem Biophys; 2017 Aug; 628():57-70. PubMed ID: 28502465
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NMR Spectroscopic Studies of the Conformational Ensembles of Intrinsically Disordered Proteins.
    Kurzbach D; Kontaxis G; Coudevylle N; Konrat R
    Adv Exp Med Biol; 2015; 870():149-85. PubMed ID: 26387102
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Six- and seven-dimensional experiments by combination of sparse random sampling and projection spectroscopy dedicated for backbone resonance assignment of intrinsically disordered proteins.
    Żerko S; Koźmiński W
    J Biomol NMR; 2015 Nov; 63(3):283-90. PubMed ID: 26403428
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mapping the per-residue surface electrostatic potential of CAPRIN1 along its phase-separation trajectory.
    Toyama Y; Rangadurai AK; Forman-Kay JD; Kay LE
    Proc Natl Acad Sci U S A; 2022 Sep; 119(36):e2210492119. PubMed ID: 36040869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. De novo determination of near-surface electrostatic potentials by NMR.
    Yu B; Pletka CC; Pettitt BM; Iwahara J
    Proc Natl Acad Sci U S A; 2021 Jun; 118(25):. PubMed ID: 34161285
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recombinant Intrinsically Disordered Proteins for NMR: Tips and Tricks.
    Calçada EO; Korsak M; Kozyreva T
    Adv Exp Med Biol; 2015; 870():187-213. PubMed ID: 26387103
    [TBL] [Abstract][Full Text] [Related]  

  • 31.
    Felli IC; Pierattelli R
    Chem Rev; 2022 May; 122(10):9468-9496. PubMed ID: 35025504
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contemporary NMR Studies of Protein Electrostatics.
    Hass MA; Mulder FA
    Annu Rev Biophys; 2015; 44():53-75. PubMed ID: 25747592
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NMR of intrinsically disordered proteins: A note on the application of
    Kumar A; Wiedemann C; Bellstedt P; Ramachandran R; Ohlenschläger O
    J Magn Reson; 2022 Apr; 337():107166. PubMed ID: 35245815
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NMR Lineshape Analysis of Intrinsically Disordered Protein Interactions.
    Waudby CA; Christodoulou J
    Methods Mol Biol; 2020; 2141():477-504. PubMed ID: 32696373
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface electrostatics dictate RNA-binding protein CAPRIN1 condensate concentration and hydrodynamic properties.
    Toyama Y; Rangadurai AK; Forman-Kay JD; Kay LE
    J Biol Chem; 2023 Jan; 299(1):102776. PubMed ID: 36496075
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic Autoinhibition of the HMGB1 Protein via Electrostatic Fuzzy Interactions of Intrinsically Disordered Regions.
    Wang X; Greenblatt HM; Bigman LS; Yu B; Pletka CC; Levy Y; Iwahara J
    J Mol Biol; 2021 Sep; 433(18):167122. PubMed ID: 34181980
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploring free-energy landscapes of intrinsically disordered proteins at atomic resolution using NMR spectroscopy.
    Jensen MR; Zweckstetter M; Huang JR; Blackledge M
    Chem Rev; 2014 Jul; 114(13):6632-60. PubMed ID: 24725176
    [No Abstract]   [Full Text] [Related]  

  • 38. Gadolinium-Based NMR Spin Relaxation Measurements of Near-Surface Electrostatic Potentials of Biomolecules.
    Yu B; Bolik-Coulon N; Rangadurai AK; Kay LE; Iwahara J
    J Am Chem Soc; 2024 Jul; 146(30):20788-20801. PubMed ID: 39028837
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nuclear magnetic resonance/single molecule fluorescence combinations to study dynamic protein systems.
    Vedel IM; Papagiannoula A; Naudi-Fabra S; Milles S
    Curr Opin Struct Biol; 2023 Oct; 82():102659. PubMed ID: 37499445
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Salt-Dependent Conformational Changes of Intrinsically Disordered Proteins.
    Wohl S; Jakubowski M; Zheng W
    J Phys Chem Lett; 2021 Jul; 12(28):6684-6691. PubMed ID: 34259536
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.