These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 37573974)
1. Unraveling the mechanism of increased synthesis of hydrogen from an anaerobic fermentation by zinc ferrate nanoparticles: Mesophilic and thermophilic situations comparison. Zhang Y; Zhao W; Li S; Zhang X; Wang S Bioresour Technol; 2023 Nov; 387():129617. PubMed ID: 37573974 [TBL] [Abstract][Full Text] [Related]
2. Comparison of mesophilic and thermophilic dark fermentation with nickel ferrite nanoparticles supplementation for biohydrogen production. Zhang J; Zhao W; Yang J; Li Z; Zhang J; Zang L Bioresour Technol; 2021 Jun; 329():124853. PubMed ID: 33621929 [TBL] [Abstract][Full Text] [Related]
3. Effects of metronidazole on mesophilic and thermophilic fermentation: Biodegradation mechanisms, microbial communities, and reversibility. Zhao W; Zhang X; Cai Y; Zhao S; Wang S Bioresour Technol; 2022 Oct; 362():127795. PubMed ID: 35988858 [TBL] [Abstract][Full Text] [Related]
4. Thermophilic Alkaline Fermentation Followed by Mesophilic Anaerobic Digestion for Efficient Hydrogen and Methane Production from Waste-Activated Sludge: Dynamics of Bacterial Pathogens as Revealed by the Combination of Metagenomic and Quantitative PCR Analyses. Wan J; Jing Y; Rao Y; Zhang S; Luo G Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330191 [TBL] [Abstract][Full Text] [Related]
5. Zinc ferrate nanoparticles for applications in medicine: synthesis, physicochemical properties, regulation of macrophage functions, and Wang Y; Liu Y; Li J; Xu X; Li X Nanotoxicology; 2020 Dec; 14(10):1381-1398. PubMed ID: 33075238 [TBL] [Abstract][Full Text] [Related]
6. Comparison of copper and aluminum doped cobalt ferrate nanoparticles for improving biohydrogen production. Li W; Zhang J; Yang J; Zhang J; Li Z; Yang Y; Zang L Bioresour Technol; 2022 Jan; 343():126078. PubMed ID: 34606925 [TBL] [Abstract][Full Text] [Related]
7. Magnetic nitrogen-doped activated carbon improved biohydrogen production. Tian K; Zhang J; Zhou C; Yang M; Zhang X; Yan X; Zang L Environ Sci Pollut Res Int; 2023 Aug; 30(37):87215-87227. PubMed ID: 37420156 [TBL] [Abstract][Full Text] [Related]
8. Enhanced biohydrogen production of anaerobic fermentation by the Fe Cui P; Wang S; Su H Bioresour Technol; 2022 Dec; 366():128144. PubMed ID: 36265787 [TBL] [Abstract][Full Text] [Related]
9. Improving mechanisms of biohydrogen production from grass using zero-valent iron nanoparticles. Yang G; Wang J Bioresour Technol; 2018 Oct; 266():413-420. PubMed ID: 29982065 [TBL] [Abstract][Full Text] [Related]
10. Comparative response of thermophilic and mesophilic sludge digesters to zinc oxide nanoparticles. Olaya W; Dilawar H; Eskicioglu C Environ Sci Pollut Res Int; 2021 May; 28(19):24521-24534. PubMed ID: 32399876 [TBL] [Abstract][Full Text] [Related]
11. Enhanced fermentative hydrogen production from industrial wastewater using mixed culture bacteria incorporated with iron, nickel, and zinc-based nanoparticles. Elreedy A; Fujii M; Koyama M; Nakasaki K; Tawfik A Water Res; 2019 Mar; 151():349-361. PubMed ID: 30616047 [TBL] [Abstract][Full Text] [Related]
12. Unraveling the roles of lanthanum-iron oxide nanoparticles in biohydrogen production. Yang J; Zhang H; Liu H; Zhang J; Pei Y; Zang L Bioresour Technol; 2022 May; 351():127027. PubMed ID: 35314310 [TBL] [Abstract][Full Text] [Related]
13. Effects of zinc oxide nanoparticles on sludge anaerobic fermentation: phenomenon and mechanism. Jin B; Yuan Y; Zhou P; Niu J; Niu J; Dai J; Li N; Tao H; Ma Z; Zhang J; Zhang Z; Li Y J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(9):1094-1103. PubMed ID: 32475216 [TBL] [Abstract][Full Text] [Related]
14. Comparison of calcium magnesium ferrite nanoparticles for boosting biohydrogen production. Wang R; Zhang H; Zhang J; Zhou C; Zhang X; Yan X; Yu F; Zhang J Bioresour Technol; 2024 Mar; 395():130410. PubMed ID: 38307484 [TBL] [Abstract][Full Text] [Related]
15. Revealing the mechanisms of alkali-based magnetic nanosheets enhanced hydrogen production from dark fermentation: Comparison between mesophilic and thermophilic conditions. Cao X; Zhao L; Dong W; Mo H; Ba T; Li T; Guan D; Zhao W; Wang N; Ma Z; Zang L Bioresour Technol; 2022 Jan; 343():126141. PubMed ID: 34655780 [TBL] [Abstract][Full Text] [Related]
16. Comparison of cobalt ferrate-based nanoparticles for promoting biomethane evolution from lactic acid anaerobic digestion. Zhang H; Li W; Zhou C; Zhang J; Pei Y; Zang L Bioresour Technol; 2022 Mar; 347():126689. PubMed ID: 35007730 [TBL] [Abstract][Full Text] [Related]
18. Peracetic acid promotes biohydrogen production from anaerobic dark fermentation of waste activated sludge. Li C; Liu X; Du M; Yang J; Lu Q; Fu Q; He D; Zhao J; Wang D Sci Total Environ; 2022 Oct; 844():156991. PubMed ID: 35772535 [TBL] [Abstract][Full Text] [Related]
19. Two-stage conversion of syngas and pyrolysis aqueous condensate into L-malate. Robazza A; Baleeiro FCF; Kleinsteuber S; Neumann A Biotechnol Biofuels Bioprod; 2024 Jun; 17(1):85. PubMed ID: 38907325 [TBL] [Abstract][Full Text] [Related]
20. Co-fermentation of residual algal biomass and glucose under the influence of Fe Srivastava N; Srivastava M; Singh R; Syed A; Bahadur Pal D; Elgorban AM; Kushwaha D; Mishra PK; Gupta VK Bioresour Technol; 2021 Dec; 342():126034. PubMed ID: 34592453 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]