These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 37574070)
21. [Tolerance of Arundo donax to heavy metals]. Han Z; Hu Z Ying Yong Sheng Tai Xue Bao; 2005 Jan; 16(1):161-5. PubMed ID: 15852979 [TBL] [Abstract][Full Text] [Related]
22. Sustainability of phytoremediation: Post-harvest stratagems and economic opportunities for the produced metals contaminated biomass. Khan AHA; Kiyani A; Santiago-Herrera M; Ibáñez J; Yousaf S; Iqbal M; Martel-Martín S; Barros R J Environ Manage; 2023 Jan; 326(Pt B):116700. PubMed ID: 36423411 [TBL] [Abstract][Full Text] [Related]
23. Emerging role of Geographical Information System (GIS), Life Cycle Assessment (LCA) and spatial LCA (GIS-LCA) in sustainable bioenergy planning. Hiloidhari M; Baruah DC; Singh A; Kataki S; Medhi K; Kumari S; Ramachandra TV; Jenkins BM; Thakur IS Bioresour Technol; 2017 Oct; 242():218-226. PubMed ID: 28343863 [TBL] [Abstract][Full Text] [Related]
24. Coupling phytoremediation of Pb-contaminated soil and biomass energy production: A comparative Life Cycle Assessment. Espada JJ; Rodríguez R; Gari V; Salcedo-Abraira P; Bautista LF Sci Total Environ; 2022 Sep; 840():156675. PubMed ID: 35716747 [TBL] [Abstract][Full Text] [Related]
25. Arundo donax L. can substitute traditional energy crops for more efficient, environmentally-friendly production of biogas: A Life Cycle Assessment approach. D'Imporzano G; Pilu R; Corno L; Adani F Bioresour Technol; 2018 Nov; 267():249-256. PubMed ID: 30025321 [TBL] [Abstract][Full Text] [Related]
26. Comparison of three ionic liquids pretreatment of Arundo donax L. For enhanced photo-fermentative hydrogen production. Chen Z; Jiang D; Zhang T; Lei T; Zhang H; Yang J; Shui X; Li F; Zhang Y; Zhang Q Bioresour Technol; 2022 Jan; 343():126088. PubMed ID: 34624469 [TBL] [Abstract][Full Text] [Related]
27. Bioaugmented Phytoremediation of Metal-Contaminated Soils and Sediments by Hemp and Giant Reed. Ferrarini A; Fracasso A; Spini G; Fornasier F; Taskin E; Fontanella MC; Beone GM; Amaducci S; Puglisi E Front Microbiol; 2021; 12():645893. PubMed ID: 33959108 [TBL] [Abstract][Full Text] [Related]
28. Effects of cadmium on mercury accumulation and transformation by Arundo donax L. Li X; Zhao L; Teng Y; Luo Y; Zhao Q Environ Sci Pollut Res Int; 2023 May; 30(22):62461-62469. PubMed ID: 36943572 [TBL] [Abstract][Full Text] [Related]
29. Spatially explicit LCA analysis of biodiversity losses due to different bioenergy policies in the European Union. Di Fulvio F; Forsell N; Korosuo A; Obersteiner M; Hellweg S Sci Total Environ; 2019 Feb; 651(Pt 1):1505-1516. PubMed ID: 30360280 [TBL] [Abstract][Full Text] [Related]
30. Chloride accumulation in aboveground biomass of three macrophytes (Phragmites australis, Juncus maritimus, and Typha latifolia) depending on their growth stages and salinity exposure: application for Cl Delattre E; Techer I; Reneaud B; Verdoux P; Laffont-Schwob I; Prohin P Environ Sci Pollut Res Int; 2022 May; 29(23):35284-35299. PubMed ID: 35060056 [TBL] [Abstract][Full Text] [Related]
31. A field study on phytoremediation of dredged sediment contaminated by heavy metals and nutrients: the impacts of sediment aeration. Wu J; Yang L; Zhong F; Cheng S Environ Sci Pollut Res Int; 2014 Dec; 21(23):13452-60. PubMed ID: 25012206 [TBL] [Abstract][Full Text] [Related]
32. A systematic review on tannery sludge to energy route: Current practices, impacts, strategies, and future directions. Moktadir MA; Ren J; Zhou J Sci Total Environ; 2023 Nov; 901():166244. PubMed ID: 37597567 [TBL] [Abstract][Full Text] [Related]
33. Pyrolysis for exploitation of biomasses selected for soil phytoremediation: Characterization of gaseous and solid products. Giudicianni P; Pindozzi S; Grottola CM; Stanzione F; Faugno S; Fagnano M; Fiorentino N; Ragucci R Waste Manag; 2017 Mar; 61():288-299. PubMed ID: 28185852 [TBL] [Abstract][Full Text] [Related]
34. Use of phytoremediated sediments dredged in maritime port as plant nursery growing media. Mattei P; D'Acqui LP; Nicese FP; Lazzerini G; Masciandaro G; Macci C; Doni S; Sarteschi F; Giagnoni L; Renella G J Environ Manage; 2017 Jan; 186(Pt 2):225-232. PubMed ID: 27307384 [TBL] [Abstract][Full Text] [Related]
35. Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. Pollastri S; Savvides A; Pesando M; Lumini E; Volpe MG; Ozudogru EA; Faccio A; De Cunzo F; Michelozzi M; Lambardi M; Fotopoulos V; Loreto F; Centritto M; Balestrini R Planta; 2018 Mar; 247(3):573-585. PubMed ID: 29124326 [TBL] [Abstract][Full Text] [Related]
36. Supporting local farming communities and crop production resilience to climate change through giant reed (Arundo donax L.) cultivation: An Italian case study. Bonfante A; Impagliazzo A; Fiorentino N; Langella G; Mori M; Fagnano M Sci Total Environ; 2017 Dec; 601-602():603-613. PubMed ID: 28575836 [TBL] [Abstract][Full Text] [Related]
37. Evaluation of the phytoremediation potential of Arundo donax L. for nickel-contaminated soil. Atma W; Larouci M; Meddah B; Benabdeli K; Sonnet P Int J Phytoremediation; 2017 Apr; 19(4):377-386. PubMed ID: 27592714 [TBL] [Abstract][Full Text] [Related]
38. Biorefining Potential of Wild-Grown da Costa RMF; Winters A; Hauck B; Martín D; Bosch M; Simister R; Gomez LD; Batista de Carvalho LAE; Canhoto JM Front Plant Sci; 2021; 12():679966. PubMed ID: 34276732 [No Abstract] [Full Text] [Related]
39. Aquatic weeds as the next generation feedstock for sustainable bioenergy production. Kaur M; Kumar M; Sachdeva S; Puri SK Bioresour Technol; 2018 Mar; 251():390-402. PubMed ID: 29254877 [TBL] [Abstract][Full Text] [Related]
40. [Phytoremediation of mercury and cadmium polluted wetland by Arundo donax]. Han Z; Hu X; Hu Z Ying Yong Sheng Tai Xue Bao; 2005 May; 16(5):945-50. PubMed ID: 16110677 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]