BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37574086)

  • 1. Electrodeposited copper enhanced removal of 2,4-dichlorophenol in batch and flow reaction in Cu@CC-PS-MFC system.
    Zhu M; Wang H; Li C; Liu Q; Wang L; Tang J
    Chemosphere; 2023 Nov; 340():139801. PubMed ID: 37574086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the mechanism of persulfate activation with carbonated waste metal adsorbed resin for the degradation of 2,4-dichlorophenol.
    Zhou S; Hu Y; Yang M; Liu Y; Li Q; Wang Y; Gu G; Gan M
    Environ Res; 2023 Jun; 226():115639. PubMed ID: 36907348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of 2,4-dichlorophenol by activating persulfate and peroxomonosulfate using micron or nanoscale zero-valent copper.
    Zhou P; Zhang J; Zhang Y; Zhang G; Li W; Wei C; Liang J; Liu Y; Shu S
    J Hazard Mater; 2018 Feb; 344():1209-1219. PubMed ID: 29174048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of 3,5-dichlorophenol by UV-C photolysis and UV-C-activated persulfate oxidation process in pure water and simulated tertiary treated urban wastewater.
    Ucun OK; Montazeri B; Arslan-Alaton I; Olmez-Hanci T
    Environ Technol; 2021 Nov; 42(25):3877-3888. PubMed ID: 32072867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneously degradation of 2,4-dichlorophenol and EDTA in aqueous solution by the bimetallic Cu-Fe/O₂ system.
    Liu X; Fan JH; Ma LM
    Environ Sci Pollut Res Int; 2015 Jan; 22(2):1186-98. PubMed ID: 25119276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New insights into stoichiometric efficiency and synergistic mechanism of persulfate activation by zero-valent bimetal (Iron/Copper) for organic pollutant degradation.
    Fang L; Liu K; Li F; Zeng W; Hong Z; Xu L; Shi Q; Ma Y
    J Hazard Mater; 2021 Feb; 403():123669. PubMed ID: 33264873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between bioelectrochemical copper migration, reduction and electricity in a three-chamber microbial fuel cell.
    Wang H; Long X; Zhang J; Cao X; Liu S; Li X
    Chemosphere; 2020 Feb; 241():125097. PubMed ID: 31629235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous copper removal and electricity production and microbial community in microbial fuel cells with different cathode catalysts.
    Wu Y; Wang L; Jin M; Zhang K
    Bioresour Technol; 2020 Jun; 305():123166. PubMed ID: 32184010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced peroxydisulfate oxidation via Cu(III) species with a Cu-MOF-derived Cu nanoparticle and 3D graphene network.
    Liu Y; Miao W; Feng Y; Fang X; Li Q; Du N; Wang D; Mao S
    J Hazard Mater; 2021 Feb; 403():123691. PubMed ID: 32846261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulating the Electronic Structure of Cu-N
    Pan QR; Lai BL; Huang LJ; Feng YN; Li N; Liu ZQ
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1234-1246. PubMed ID: 36578164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cost-effective copper removal by electrosorption powered by microbial fuel cells.
    Yang J; Zhou M; Hu Y; Yang W
    Bioprocess Biosyst Eng; 2016 Mar; 39(3):511-9. PubMed ID: 26747441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper recovery combined with electricity production in a microbial fuel cell.
    Heijne AT; Liu F; Weijden Rv; Weijma J; Buisman CJ; Hamelers HV
    Environ Sci Technol; 2010 Jun; 44(11):4376-81. PubMed ID: 20462261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous flow operation with appropriately adjusting composites in influent for recovery of Cr(VI), Cu(II) and Cd(II) in self-driven MFC-MEC system.
    Li M; Pan Y; Huang L; Zhang Y; Yang J
    Environ Technol; 2017 Mar; 38(5):615-628. PubMed ID: 27336289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell.
    Tao HC; Liang M; Li W; Zhang LJ; Ni JR; Wu WM
    J Hazard Mater; 2011 May; 189(1-2):186-92. PubMed ID: 21377788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper removal and microbial community analysis in single-chamber microbial fuel cell.
    Wu Y; Zhao X; Jin M; Li Y; Li S; Kong F; Nan J; Wang A
    Bioresour Technol; 2018 Apr; 253():372-377. PubMed ID: 29361349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Utilization of Copper (Ⅱ) Wastewater for Enhancing the Treatment of Chromium (Ⅵ) Wastewater in Microbial Fuel Cells].
    Xiong XM; Wu XY; Jia HH; Yong XY; Zhou J; Wei P
    Huan Jing Ke Xue; 2017 Oct; 38(10):4262-4270. PubMed ID: 29965210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of industrial contaminants with zero-valent iron- and zero-valent aluminium-activated persulfate: a case study with 3,5-dichlorophenol and 2,4-dichloroaniline.
    Koba Ucun O; Montazeri B; Arslan Alaton İ; Ölmez Hanci T
    Turk J Chem; 2021; 45(2):269-281. PubMed ID: 34104043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling the cathodic reduction of 2,4-dichlorophenol in a microbial fuel cell.
    Leon-Fernandez LF; Fernandez-Morales FJ; Villaseñor Camacho J
    Bioprocess Biosyst Eng; 2022 Apr; 45(4):771-782. PubMed ID: 35138451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pathway for promoting bioelectrochemical performance of microbial fuel cell by synthesizing graphite carbon nitride doped on single atom catalyst copper as cathode catalyst.
    Chen J; Yang J; Tian J; Zhang Y; Wu Y; Zhao K; Wang R; Yang Y; Liu Y
    Bioresour Technol; 2023 Mar; 372():128677. PubMed ID: 36706819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Persulfate activation by sludge-derived biochar for efficient degradation of 2,4-dichlorophenol: performance and mechanism.
    Liu S; Wang J; Zhang Z; Dou M; Huo K; Ding G; Zhou Y; Qiao C
    Environ Sci Pollut Res Int; 2023 Mar; 30(15):45259-45273. PubMed ID: 36705826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.