These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 37574259)
1. Double Emulsion Droplets as a Plausible Step to Fatty Acid Protocells. Douliez JP Small Methods; 2023 Dec; 7(12):e2300530. PubMed ID: 37574259 [TBL] [Abstract][Full Text] [Related]
2. One step generation of single-core double emulsions from polymer-osmose-induced aqueous phase separation in polar oil droplets. Douliez JP; Arlaut A; Beven L; Fameau AL; Saint-Jalmes A Soft Matter; 2023 Oct; 19(39):7562-7569. PubMed ID: 37751151 [TBL] [Abstract][Full Text] [Related]
3. Cyclophospholipids Enable a Protocellular Life Cycle. Toparlak ÖD; Sebastianelli L; Egas Ortuno V; Karki M; Xing Y; Szostak JW; Krishnamurthy R; Mansy SS ACS Nano; 2023 Dec; 17(23):23772-23783. PubMed ID: 38038709 [TBL] [Abstract][Full Text] [Related]
4. Microfluidic generation of ATPS droplets by transient double emulsion technique. Zhou C; Zhu P; Han X; Shi R; Tian Y; Wang L Lab Chip; 2021 Jul; 21(14):2684-2690. PubMed ID: 34170274 [TBL] [Abstract][Full Text] [Related]
5. Production of W/O/W (water-in-oil-in-water) multiple emulsions: droplet breakup and release of water. Schuch A; Deiters P; Henne J; Köhler K; Schuchmann HP J Colloid Interface Sci; 2013 Jul; 402():157-64. PubMed ID: 23643254 [TBL] [Abstract][Full Text] [Related]
6. Prebiotic Protocell Membranes Retain Encapsulated Contents during Flocculation, and Phospholipids Preserve Encapsulation during Dehydration. Cohen ZR; Cornell CE; Catling DC; Black RA; Keller SL Langmuir; 2022 Jan; 38(3):1304-1310. PubMed ID: 35026114 [TBL] [Abstract][Full Text] [Related]
7. Giant biocompatible and biodegradable PEG-PMCL vesicles and microcapsules by solvent evaporation from double emulsion droplets. Foster T; Dorfman KD; Davis HT J Colloid Interface Sci; 2010 Nov; 351(1):140-50. PubMed ID: 20627256 [TBL] [Abstract][Full Text] [Related]
8. [Novel method for preparing vesicles from a monodisperse emulsion aimed at controlling the size and improving the entrapment yield]. Ichikawa S; Kuroiwa T Yakugaku Zasshi; 2008 May; 128(5):681-6. PubMed ID: 18451613 [TBL] [Abstract][Full Text] [Related]
9. Novel method for obtaining homogeneous giant vesicles from a monodisperse water-in-oil emulsion prepared with a microfluidic device. Sugiura S; Kuroiwa T; Kagota T; Nakajima M; Sato S; Mukataka S; Walde P; Ichikawa S Langmuir; 2008 May; 24(9):4581-8. PubMed ID: 18376890 [TBL] [Abstract][Full Text] [Related]
11. Programmatically Dynamic Microcompartmentation in Coacervate-in-Pickering Emulsion Protocell. Chen M; Liu G; Zhang M; Li Y; Hong X; Yang H Small; 2023 Mar; 19(10):e2206437. PubMed ID: 36564366 [TBL] [Abstract][Full Text] [Related]
12. Novel glass capillary microfluidic devices for the flexible and simple production of multi-cored double emulsions. Leister N; Vladisavljević GT; Karbstein HP J Colloid Interface Sci; 2022 Apr; 611():451-461. PubMed ID: 34968964 [TBL] [Abstract][Full Text] [Related]
17. Optimisation of bacterial release from a stable microfluidic-generated water-in-oil-in-water emulsion. Mohd Isa NS; El Kadri H; Vigolo D; Gkatzionis K RSC Adv; 2021 Feb; 11(13):7738-7749. PubMed ID: 35423274 [TBL] [Abstract][Full Text] [Related]
18. Effect of oil phases on the stability of myofibrillar protein microgel particles stabilized Pickering emulsions: The leading role of viscosity. Feng X; Sun Y; Tan H; Ma L; Dai H; Zhang Y Food Chem; 2023 Jul; 413():135653. PubMed ID: 36773361 [TBL] [Abstract][Full Text] [Related]
19. Fractional crystallization of oil droplets in O/W emulsions dispersed by Synperonic F127. Avendaño-Gómez JR; Balmori-Ramírez H; Durán-Páramo E J Colloid Interface Sci; 2012 Aug; 380(1):75-82. PubMed ID: 22652588 [TBL] [Abstract][Full Text] [Related]