These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37574284)

  • 1. Fabrication and Characterization of Oleofoams Composed of Tribehenoyl-glycerol: Toward a Stable and Higher Air-content Colloidal System.
    Matsuo K; Fujii Y; Ueno S
    J Oleo Sci; 2023 Aug; 72(9):819-829. PubMed ID: 37574284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation and Physical Analysis of Oleogels Composed of Edible Oils and High-Melting Fat Crystals.
    Matsuo K; Ueno S
    J Oleo Sci; 2021 Oct; 70(10):1381-1390. PubMed ID: 34497180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of Pulse Protein Foam-Templated Oleogels into Oleofoams for Improved Baking Application.
    Mohanan A; Harrison K; Cooper DML; Nickerson MT; Ghosh S
    Foods; 2022 Sep; 11(18):. PubMed ID: 36141019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilisation of oleofoams by lauric acid and its glycerol esters.
    Qiu C; Wang S; Wang Y; Lee WJ; Fu J; Binks BP; Wang Y
    Food Chem; 2022 Aug; 386():132776. PubMed ID: 35509162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel approach for the development of edible oleofoams using double network oleogelation systems.
    Tirgarian B; Farmani J
    Food Chem; 2023 Nov; 426():136634. PubMed ID: 37348400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gelation and foaming properties of fatty acid mixtures in sunflower oil.
    Zheng R; Zheng Q; Hu B; Cao Y; Lan Y
    J Sci Food Agric; 2022 Jul; 102(9):3513-3521. PubMed ID: 34841529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oleofoams: Properties of Crystal-Coated Bubbles from Whipped Oleogels-Evidence for Pickering Stabilization.
    Gunes DZ; Murith M; Godefroid J; Pelloux C; Deyber H; Schafer O; Breton O
    Langmuir; 2017 Feb; 33(6):1563-1575. PubMed ID: 28139122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and characterization of stable oleofoam based on medium-long chain diacylglycerol and β-sitosterol.
    Qiu C; Lei M; Lee WJ; Zhang N; Wang Y
    Food Chem; 2021 Jul; 350():129275. PubMed ID: 33601090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of Stable Oleofoams with Sorbitan Ester Surfactants.
    Liu Y; Binks BP
    Langmuir; 2022 Dec; 38(48):14779-14788. PubMed ID: 36410861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Producing superior oleofoams: Unraveling the impact of oil type, surfactant concentration, and production temperature on foam stability and functional characteristics.
    Alhasan FH; Tehrani MM; Varidi M
    Food Chem X; 2024 Mar; 21():101033. PubMed ID: 38205159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal-reversible lacquer wax-based oleofoams in dual stabilization with high ambient stability.
    Gu X; Du L; Meng Z
    Food Res Int; 2023 May; 167():112650. PubMed ID: 37087239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oleofoams stabilized by monoacylglycerides: Impact of chain length and concentration.
    Grossi M; Fang B; Rao J; Chen B
    Food Res Int; 2023 Jul; 169():112914. PubMed ID: 37254346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of crystallisation of native phytosterols and monoacylglycerols on foaming properties of whipped oleogels.
    Truong T; Prakash S; Bhandari B
    Food Chem; 2019 Jul; 285():86-93. PubMed ID: 30797379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oleofoams: The impact of formulating air-in-oil systems from a lipid oxidation perspective.
    Ribourg-Birault L; Meynier A; Vergé S; Sallan E; Kermarrec A; Falourd X; Berton-Carabin C; Fameau AL
    Curr Res Food Sci; 2024; 8():100690. PubMed ID: 38328464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whipped oil stabilised by surfactant crystals.
    Binks BP; Garvey EJ; Vieira J
    Chem Sci; 2016 Apr; 7(4):2621-2632. PubMed ID: 28660034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel strategy to fabricate stable oil foams with sucrose ester surfactant.
    Liu Y; Binks BP
    J Colloid Interface Sci; 2021 Jul; 594():204-216. PubMed ID: 33761395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wax based oleogels and their application in sponge cakes.
    Wettlaufer T; Flöter E
    Food Funct; 2022 Sep; 13(18):9419-9433. PubMed ID: 35971805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of X-ray Microcomputed Tomography for the Static and Dynamic Characterization of the Microstructure of Oleofoams.
    Metilli L; Storm M; Marathe S; Lazidis A; Marty-Terrade S; Simone E
    Langmuir; 2022 Feb; 38(4):1638-1650. PubMed ID: 35050635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Glyceryl Monoolein Addition on the Foaming Properties and Stability of Whipped Oleogels.
    Andriotis EG; Monou PK; Komis G; Bouropoulos N; Ritzoulis C; Delis G; Kiosis E; Arsenos G; Fatouros DG
    Gels; 2022 Oct; 8(11):. PubMed ID: 36354613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Foams of vegetable oils containing long-chain triglycerides.
    Liu Y; Binks BP
    J Colloid Interface Sci; 2021 Feb; 583():522-534. PubMed ID: 33039856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.