These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37574533)

  • 41. Computational investigation of the properties of double furazan-based and furoxan-based energetic materials.
    Xia M; Chu Y; Wang T; Lei W; Wang F
    J Mol Model; 2016 Nov; 22(11):268. PubMed ID: 27766503
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Triggering the mechanism of the initial reaction of energetic materials under pressure based on Raman intensity analysis.
    Zheng W; Liu QJ; Liu FS; Liu ZT
    Phys Chem Chem Phys; 2023 Feb; 25(7):5685-5693. PubMed ID: 36734476
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of two different anaesthetics on serum concentrations of cortisol and luteinizing hormone in barrows and gilts.
    Clapper JA
    Lab Anim; 2008 Jan; 42(1):83-91. PubMed ID: 18348769
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 4,4'-Dinitrimino-5,5'-diamino-3,3'-azo-bis-1,2,4-triazole: A High-Performing Zwitterionic Energetic Material.
    Yount J; Zeller M; Byrd EFC; Piercey DG
    Inorg Chem; 2021 Nov; 60(21):16204-16212. PubMed ID: 34586784
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Novel fluorine-containing energetic materials: how potential are they? A computational study of detonation performance.
    Yang J; Bai T; Guan J; Li M; Zhen Z; Dong X; Wang Y; Wang Y
    J Mol Model; 2023 Jul; 29(8):228. PubMed ID: 37405580
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The ionic salts with super oxidizing ions O
    Yang X; Li N; Li Y; Pang S
    Front Chem; 2022; 10():1005816. PubMed ID: 36212074
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Use of the anesthetic combination of tiletamine, zolazepam, ketamine, and xylazine for neutering feral cats.
    Williams LS; Levy JK; Robertson SA; Cistola AM; Centonze LA
    J Am Vet Med Assoc; 2002 May; 220(10):1491-5. PubMed ID: 12018375
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intermolecular CH···O/N H-bonds in the biologically important pairs of natural nucleobases: a thorough quantum-chemical study.
    Brovarets' OO; Yurenko YP; Hovorun DM
    J Biomol Struct Dyn; 2014; 32(6):993-1022. PubMed ID: 23730732
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermal Stability and Detonation Properties of Potassium 4,4'-Bis(dinitromethyl)-3,3'-azofurazanate, an Environmentally Friendly Energetic Three-Dimensional Metal-Organic Framework.
    Guo D; An Q
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1512-1519. PubMed ID: 30525412
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular design of aminopolynitroazole-based high-energy materials.
    Ghule VD; Srinivas D; Sarangapani R; Jadhav PM; Tewari SP
    J Mol Model; 2012 Jul; 18(7):3013-20. PubMed ID: 22160794
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dancing with Energetic Nitrogen Atoms: Versatile N-Functionalization Strategies for N-Heterocyclic Frameworks in High Energy Density Materials.
    Yin P; Zhang Q; Shreeve JM
    Acc Chem Res; 2016 Jan; 49(1):4-16. PubMed ID: 26717271
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A novel 3D energetic MOF of high energy content: synthesis and superior explosive performance of a Pb(ii) compound with 5,5'-bistetrazole-1,1'-diolate.
    Shang Y; Jin B; Peng R; Liu Q; Tan B; Guo Z; Zhao J; Zhang Q
    Dalton Trans; 2016 Sep; 45(35):13881-7. PubMed ID: 27518537
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Conjugated Energetic Salts Based on Fused Rings: Insensitive and Highly Dense Materials.
    Hu L; Yin P; Zhao G; He C; Imler GH; Parrish DA; Gao H; Shreeve JM
    J Am Chem Soc; 2018 Nov; 140(44):15001-15007. PubMed ID: 30365329
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Theoretical design of novel energetic salts derived from bicyclo-HMX.
    Zhang C; Zhao FQ; Xu SY; Ju XH
    J Mol Model; 2018 Oct; 24(10):304. PubMed ID: 30280266
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Theoretical studies on nitrogen rich energetic azoles.
    Ghule VD; Sarangapani R; Jadhav PM; Tewari SP
    J Mol Model; 2011 Jun; 17(6):1507-15. PubMed ID: 20872031
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hydrogen-bonding interactions and properties of energetic nitroamino[1,3,5]triazine-based guanidinium salts: DFT-D and QTAIM studies.
    Wang F; Du H; Liu H; Gong X
    Chem Asian J; 2012 Nov; 7(11):2577-91. PubMed ID: 22945691
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The phase stability of predicted pentazole derivate compounds under high pressure.
    Huang X; Wu P; Cheng L; Zhang J; Wang K
    Phys Chem Chem Phys; 2022 Nov; 24(46):28513-28521. PubMed ID: 36409265
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CL-20-Based Cocrystal Energetic Materials: Simulation, Preparation and Performance.
    Pang WQ; Wang K; Zhang W; Luca LT; Fan XZ; Li JQ
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32962224
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Theoretical screening of bistriazole-derived energetic salts with high energetic properties and low sensitivity.
    Li XH; Zhang C; Ju XH
    RSC Adv; 2019 Aug; 9(45):26442-26449. PubMed ID: 35531023
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.