These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 37574622)

  • 1. Reconstructing controllable faces from brain activity with hierarchical multiview representations.
    Ren Z; Li J; Xue X; Li X; Yang F; Jiao Z; Gao X
    Neural Netw; 2023 Sep; 166():487-500. PubMed ID: 37574622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperrealistic neural decoding for reconstructing faces from fMRI activations via the GAN latent space.
    Dado T; Güçlütürk Y; Ambrogioni L; Ras G; Bosch S; van Gerven M; Güçlü U
    Sci Rep; 2022 Jan; 12(1):141. PubMed ID: 34997012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retrieving and reconstructing conceptually similar images from fMRI with latent diffusion models and a neuro-inspired brain decoding model.
    Ferrante M; Boccato T; Passamonti L; Toschi N
    J Neural Eng; 2024 Jun; 21(4):. PubMed ID: 38885689
    [No Abstract]   [Full Text] [Related]  

  • 4. Finding Distributed Needles in Neural Haystacks.
    Cox CR; Rogers TT
    J Neurosci; 2021 Feb; 41(5):1019-1032. PubMed ID: 33334868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transfer learning of deep neural network representations for fMRI decoding.
    Svanera M; Savardi M; Benini S; Signoroni A; Raz G; Hendler T; Muckli L; Goebel R; Valente G
    J Neurosci Methods; 2019 Dec; 328():108319. PubMed ID: 31585315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstructing seen image from brain activity by visually-guided cognitive representation and adversarial learning.
    Ren Z; Li J; Xue X; Li X; Yang F; Jiao Z; Gao X
    Neuroimage; 2021 Mar; 228():117602. PubMed ID: 33395572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstructing Perceived and Retrieved Faces from Activity Patterns in Lateral Parietal Cortex.
    Lee H; Kuhl BA
    J Neurosci; 2016 Jun; 36(22):6069-82. PubMed ID: 27251627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain2GAN: Feature-disentangled neural encoding and decoding of visual perception in the primate brain.
    Dado T; Papale P; Lozano A; Le L; Wang F; van Gerven M; Roelfsema P; Güçlütürk Y; Güçlü U
    PLoS Comput Biol; 2024 May; 20(5):e1012058. PubMed ID: 38709818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Alignment-Auxiliary Generative Adversarial Network-Based Visual Stimuli Reconstruction via Multi-Subject fMRI.
    Huang S; Sun L; Yousefnezhad M; Wang M; Zhang D
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2715-2725. PubMed ID: 37279132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstructing Perceived Images From Human Brain Activities With Bayesian Deep Multiview Learning.
    Du C; Du C; Huang L; He H
    IEEE Trans Neural Netw Learn Syst; 2019 Aug; 30(8):2310-2323. PubMed ID: 30561354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inter-individual deep image reconstruction via hierarchical neural code conversion.
    Ho JK; Horikawa T; Majima K; Cheng F; Kamitani Y
    Neuroimage; 2023 May; 271():120007. PubMed ID: 36914105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate Reconstruction of Image Stimuli From Human Functional Magnetic Resonance Imaging Based on the Decoding Model With Capsule Network Architecture.
    Qiao K; Zhang C; Wang L; Chen J; Zeng L; Tong L; Yan B
    Front Neuroinform; 2018; 12():62. PubMed ID: 30294269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semantics-Guided Hierarchical Feature Encoding Generative Adversarial Network for Visual Image Reconstruction From Brain Activity.
    Meng L; Yang C
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1267-1283. PubMed ID: 38498745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variational autoencoder: An unsupervised model for encoding and decoding fMRI activity in visual cortex.
    Han K; Wen H; Shi J; Lu KH; Zhang Y; Fu D; Liu Z
    Neuroimage; 2019 Sep; 198():125-136. PubMed ID: 31103784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BigGAN-based Bayesian Reconstruction of Natural Images from Human Brain Activity.
    Qiao K; Chen J; Wang L; Zhang C; Tong L; Yan B
    Neuroscience; 2020 Sep; 444():92-105. PubMed ID: 32736069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constraint-Free Natural Image Reconstruction From fMRI Signals Based on Convolutional Neural Network.
    Zhang C; Qiao K; Wang L; Tong L; Zeng Y; Yan B
    Front Hum Neurosci; 2018; 12():242. PubMed ID: 29988371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A CNN-transformer hybrid approach for decoding visual neural activity into text.
    Zhang J; Li C; Liu G; Min M; Wang C; Li J; Wang Y; Yan H; Zuo Z; Huang W; Chen H
    Comput Methods Programs Biomed; 2022 Feb; 214():106586. PubMed ID: 34963092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ShapeEditor: A StyleGAN Encoder for Stable and High Fidelity Face Swapping.
    Yang S; Qiao K; Qin R; Xie P; Shi S; Liang N; Wang L; Chen J; Hu G; Yan B
    Front Neurorobot; 2021; 15():785808. PubMed ID: 35126081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The modulatory effect of semantic familiarity on the audiovisual integration of face-name pairs.
    Li Y; Wang F; Huang B; Yang W; Yu T; Talsma D
    Hum Brain Mapp; 2016 Dec; 37(12):4333-4348. PubMed ID: 27401122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical multi-resolution mesh networks for brain decoding.
    Onal Ertugrul I; Ozay M; Yarman Vural FT
    Brain Imaging Behav; 2018 Aug; 12(4):1067-1083. PubMed ID: 28980144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.