These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 37574757)

  • 1. ParSe 2.0: A web tool to identify drivers of protein phase separation at the proteome level.
    Wilson C; Lewis KA; Fitzkee NC; Hough LE; Whitten ST
    Protein Sci; 2023 Sep; 32(9):e4756. PubMed ID: 37574757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsically disordered regions that drive phase separation form a robustly distinct protein class.
    Ibrahim AY; Khaodeuanepheng NP; Amarasekara DL; Correia JJ; Lewis KA; Fitzkee NC; Hough LE; Whitten ST
    J Biol Chem; 2023 Jan; 299(1):102801. PubMed ID: 36528065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beta turn propensity and a model polymer scaling exponent identify intrinsically disordered phase-separating proteins.
    Paiz EA; Allen JH; Correia JJ; Fitzkee NC; Hough LE; Whitten ST
    J Biol Chem; 2021 Nov; 297(5):101343. PubMed ID: 34710373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Interpretable Machine-Learning Algorithm to Predict Disordered Protein Phase Separation Based on Biophysical Interactions.
    Cai H; Vernon RM; Forman-Kay JD
    Biomolecules; 2022 Aug; 12(8):. PubMed ID: 36009025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase Separation of Intrinsically Disordered Proteins.
    Posey AE; Holehouse AS; Pappu RV
    Methods Enzymol; 2018; 611():1-30. PubMed ID: 30471685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of sequence-based predictors for phase-separating protein.
    Liao S; Zhang Y; Qi Y; Zhang Z
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37287138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disorder Atlas: Web-based software for the proteome-based interpretation of intrinsic disorder predictions.
    Vincent M; Schnell S
    Comput Biol Chem; 2019 Dec; 83():107090. PubMed ID: 31326853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The unfoldomics decade: an update on intrinsically disordered proteins.
    Dunker AK; Oldfield CJ; Meng J; Romero P; Yang JY; Chen JW; Vacic V; Obradovic Z; Uversky VN
    BMC Genomics; 2008 Sep; 9 Suppl 2(Suppl 2):S1. PubMed ID: 18831774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Length-dependent prediction of protein intrinsic disorder.
    Peng K; Radivojac P; Vucetic S; Dunker AK; Obradovic Z
    BMC Bioinformatics; 2006 Apr; 7():208. PubMed ID: 16618368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DFLpred: High-throughput prediction of disordered flexible linker regions in protein sequences.
    Meng F; Kurgan L
    Bioinformatics; 2016 Jun; 32(12):i341-i350. PubMed ID: 27307636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Connecting Coil-to-Globule Transitions to Full Phase Diagrams for Intrinsically Disordered Proteins.
    Zeng X; Holehouse AS; Chilkoti A; Mittag T; Pappu RV
    Biophys J; 2020 Jul; 119(2):402-418. PubMed ID: 32619404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsically disordered protein regions and phase separation: sequence determinants of assembly or lack thereof.
    Martin EW; Holehouse AS
    Emerg Top Life Sci; 2020 Dec; 4(3):307-329. PubMed ID: 33078839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteome-scale analysis of phase-separated proteins in immunofluorescence images.
    Yu C; Shen B; You K; Huang Q; Shi M; Wu C; Chen Y; Zhang C; Li T
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 34020549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior.
    Schuster BS; Dignon GL; Tang WS; Kelley FM; Ranganath AK; Jahnke CN; Simpkins AG; Regy RM; Hammer DA; Good MC; Mittal J
    Proc Natl Acad Sci U S A; 2020 May; 117(21):11421-11431. PubMed ID: 32393642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs.
    Lin Y; Currie SL; Rosen MK
    J Biol Chem; 2017 Nov; 292(46):19110-19120. PubMed ID: 28924037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How do intrinsically disordered protein regions encode a driving force for liquid-liquid phase separation?
    Borcherds W; Bremer A; Borgia MB; Mittag T
    Curr Opin Struct Biol; 2021 Apr; 67():41-50. PubMed ID: 33069007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Screening of Phase-separating Proteins.
    Shen B; Chen Z; Yu C; Chen T; Shi M; Li T
    Genomics Proteomics Bioinformatics; 2021 Feb; 19(1):13-24. PubMed ID: 33610793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput prediction of disordered moonlighting regions in protein sequences.
    Meng F; Kurgan L
    Proteins; 2018 Oct; 86(10):1097-1110. PubMed ID: 30099775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophobicity─A Single Parameter for the Accurate Prediction of Disordered Regions in Proteins.
    Singh NK; Bhardwaj P; Radhakrishna M
    J Chem Inf Model; 2023 Aug; 63(16):5375-5383. PubMed ID: 37581491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale prediction of long disordered regions in proteins using random forests.
    Han P; Zhang X; Norton RS; Feng ZP
    BMC Bioinformatics; 2009 Jan; 10():8. PubMed ID: 19128505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.