BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37575176)

  • 1. Binary Classification of the Endocrine Disrupting Chemicals by Artificial Neural Networks.
    Aghayev Z; Walker GF; Iseri F; Ali M; Szafran AT; Stossi F; Mancini MA; Pistikopoulos EN; Beykal B
    ESCAPE; 2023; 52():2631-2636. PubMed ID: 37575176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Methods for Endocrine Disrupting Potential Identification Based on Single-Cell Data.
    Aghayev Z; Szafran AT; Tran A; Ganesh HS; Stossi F; Zhou L; Mancini MA; Pistikopoulos EN; Beykal B
    Chem Eng Sci; 2023 Nov; 281():. PubMed ID: 37637227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of estrogenic compounds by coupling high content analysis and machine learning algorithms.
    Mukherjee R; Beykal B; Szafran AT; Onel M; Stossi F; Mancini MG; Lloyd D; Wright FA; Zhou L; Mancini MA; Pistikopoulos EN
    PLoS Comput Biol; 2020 Sep; 16(9):e1008191. PubMed ID: 32970665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the Estrogen Receptor Activity of Environmental Chemicals by Single-Cell Image Analysis and Data-driven Modeling.
    Ganesh HS; Beykal B; Szafran AT; Stossi F; Zhou L; Mancini MA; Pistikopoulos EN
    ESCAPE; 2021; 50():481-486. PubMed ID: 34355221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods.
    Zang Q; Rotroff DM; Judson RS
    J Chem Inf Model; 2013 Dec; 53(12):3244-61. PubMed ID: 24279462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational modeling approaches for developing a synergistic effect prediction model of estrogen agonistic activity.
    Seo M; Choi J; Park J; Yu WJ; Kim S
    Chemosphere; 2024 Feb; 349():140926. PubMed ID: 38092168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A big data approach with artificial neural network and molecular similarity for chemical data mining and endocrine disruption prediction.
    Paulose R; Jegatheesan K; Balakrishnan GS
    Indian J Pharmacol; 2018; 50(4):169-176. PubMed ID: 30505052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive Models for Compound Binding to Androgen and Estrogen Receptors Based on Counter-Propagation Artificial Neural Networks.
    Stanojević M; Sollner Dolenc M; Vračko M
    Toxics; 2023 May; 11(6):. PubMed ID: 37368586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of in silico classification models for binding affinity to the glucocorticoid receptor.
    Stanojević M; Vračko M; Sollner Dolenc M
    Chemosphere; 2023 Sep; 336():139147. PubMed ID: 37301514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development, validation and integration of in silico models to identify androgen active chemicals.
    Manganelli S; Roncaglioni A; Mansouri K; Judson RS; Benfenati E; Manganaro A; Ruiz P
    Chemosphere; 2019 Apr; 220():204-215. PubMed ID: 30584954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico screening of estrogen-like chemicals based on different nonlinear classification models.
    Liu H; Papa E; Walker JD; Gramatica P
    J Mol Graph Model; 2007 Jul; 26(1):135-44. PubMed ID: 17293141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of machine learning algorithms for chemical toxicity classification using a simulated multi-scale data model.
    Judson R; Elloumi F; Setzer RW; Li Z; Shah I
    BMC Bioinformatics; 2008 May; 9():241. PubMed ID: 18489778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competitive molecular docking approach for predicting estrogen receptor subtype α agonists and antagonists.
    Ng HW; Zhang W; Shu M; Luo H; Ge W; Perkins R; Tong W; Hong H
    BMC Bioinformatics; 2014; 15 Suppl 11(Suppl 11):S4. PubMed ID: 25349983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research.
    Agatonovic-Kustrin S; Beresford R
    J Pharm Biomed Anal; 2000 Jun; 22(5):717-27. PubMed ID: 10815714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integral assessment of estrogenic potentials in sediment-associated samples: Part 2: Study of estrogen and anti-estrogen receptor-binding potentials of sediment-associated chemicals under different salinity conditions using the salinity-adapted enzyme-linked receptor assay.
    Kase R; Hansen PD; Fischer B; Manz W; Heininger P; Reifferscheid G
    Environ Sci Pollut Res Int; 2009 Jan; 16(1):54-64. PubMed ID: 19011916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated classification of tropical shrub species: a hybrid of leaf shape and machine learning approach.
    Murat M; Chang SW; Abu A; Yap HJ; Yong KT
    PeerJ; 2017; 5():e3792. PubMed ID: 28924506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated Model of Chemical Perturbations of a Biological Pathway Using 18 In Vitro High-Throughput Screening Assays for the Estrogen Receptor.
    Judson RS; Magpantay FM; Chickarmane V; Haskell C; Tania N; Taylor J; Xia M; Huang R; Rotroff DM; Filer DL; Houck KA; Martin MT; Sipes N; Richard AM; Mansouri K; Setzer RW; Knudsen TB; Crofton KM; Thomas RS
    Toxicol Sci; 2015 Nov; 148(1):137-54. PubMed ID: 26272952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The efficacy of endocrine disruptor screening tests in detecting anti-estrogenic effects downstream of receptor-ligand interactions.
    Takeyoshi M; Yamasaki K; Sawaki M; Nakai M; Noda S; Takatsuki M
    Toxicol Lett; 2002 Jan; 126(2):91-8. PubMed ID: 11751013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binary and multi-class classification for androgen receptor agonists, antagonists and binders.
    Piir G; Sild S; Maran U
    Chemosphere; 2021 Jan; 262():128313. PubMed ID: 33182081
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.