These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37575397)

  • 1. Using Fiber Photometry in Mice to Estimate Fluorescent Biosensor Levels During Sleep.
    Andersen M; Tsopanidou A; Radovanovic T; Compere VN; Hauglund N; Nedergaard M; Kjaerby C
    Bio Protoc; 2023 Aug; 13(15):e4734. PubMed ID: 37575397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectrally Resolved Fiber Photometry for In Vivo Multi-Color Fluorescence Measurements.
    Zhou J; Yeh A; Meng C; Papaneri AB; Peddada T; Kobzar NP; Cui G
    Curr Protoc; 2022 Nov; 2(11):e587. PubMed ID: 36373979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Time, In Vivo Measurement of Protein Kinase A Activity in Deep Brain Structures Using Fluorescence Lifetime Photometry (FLiP).
    Lodder B; Lee SJ; Sabatini BL
    Curr Protoc; 2021 Oct; 1(10):e265. PubMed ID: 34661994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restoration of locus coeruleus noradrenergic transmission during sleep.
    Sima J; Zhang Y; Farriday D; Ahn AY; Lopez ER; Jin C; Harrell J; Darmohray D; Silverman D; Dan Y
    bioRxiv; 2024 Jul; ():. PubMed ID: 39005471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent Biosensors for Neurotransmission and Neuromodulation: Engineering and Applications.
    Leopold AV; Shcherbakova DM; Verkhusha VV
    Front Cell Neurosci; 2019; 13():474. PubMed ID: 31708747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo detection of GPCR-dependent signaling using fiber photometry and FRET-based biosensors.
    Jones-Tabah J; Mohammad H; Clarke PBS; Hébert TE
    Methods; 2022 Jul; 203():422-430. PubMed ID: 34022351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tenuifolin, a saponin derived from Radix Polygalae, exhibits sleep-enhancing effects in mice.
    Cao Q; Jiang Y; Cui SY; Tu PF; Chen YM; Ma XL; Cui XY; Huang YL; Ding H; Song JZ; Yu B; Sheng ZF; Wang ZJ; Xu YP; Yang G; Ye H; Hu X; Zhang YH
    Phytomedicine; 2016 Dec; 23(14):1797-1805. PubMed ID: 27912882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Within-Mice Comparison of Microdialysis and Fiber Photometry-Recorded Dopamine Biosensor during Amphetamine Response.
    Ejdrup AL; Wellbourne-Wood J; Dreyer JK; Guldhammer N; Lycas MD; Gether U; Hall BJ; Sørensen G
    ACS Chem Neurosci; 2023 May; 14(9):1622-1630. PubMed ID: 37043174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A selected review of recent advances in the study of neuronal circuits using fiber photometry.
    Wang Y; DeMarco EM; Witzel LS; Keighron JD
    Pharmacol Biochem Behav; 2021 Feb; 201():173113. PubMed ID: 33444597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lights, fiber, action! A primer on in vivo fiber photometry.
    Simpson EH; Akam T; Patriarchi T; Blanco-Pozo M; Burgeno LM; Mohebi A; Cragg SJ; Walton ME
    Neuron; 2024 Mar; 112(5):718-739. PubMed ID: 38103545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multichannel fiber photometry for mapping axonal terminal activity in a restricted brain region in freely moving mice.
    Qin H; Lu J; Jin W; Chen X; Fu L
    Neurophotonics; 2019 Jul; 6(3):035011. PubMed ID: 31528656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GABAergic neurons in prepositus hypoglossi regulate REM sleep by its action on locus coeruleus in freely moving rats.
    Kaur S; Saxena RN; Mallick BN
    Synapse; 2001 Dec; 42(3):141-50. PubMed ID: 11746711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-density multi-fiber photometry for studying large-scale brain circuit dynamics.
    Sych Y; Chernysheva M; Sumanovski LT; Helmchen F
    Nat Methods; 2019 Jun; 16(6):553-560. PubMed ID: 31086339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term Fiber Photometry for Neuroscience Studies.
    Li Y; Liu Z; Guo Q; Luo M
    Neurosci Bull; 2019 Jun; 35(3):425-433. PubMed ID: 31062336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precise and Pervasive Phasic Bursting in Locus Coeruleus during Maternal Behavior in Mice.
    Dvorkin R; Shea SD
    J Neurosci; 2022 Apr; 42(14):2986-2999. PubMed ID: 35273081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber photometry for monitoring cerebral oxygen saturation in freely-moving rodents.
    Yu L; Thurston EMS; Hashem M; Dunn JF; Whelan PJ; Murari K
    Biomed Opt Express; 2020 Jul; 11(7):3491-3506. PubMed ID: 33014546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Region-Specific Dissociation between Cortical Noradrenaline Levels and the Sleep/Wake Cycle.
    Bellesi M; Tononi G; Cirelli C; Serra PA
    Sleep; 2016 Jan; 39(1):143-54. PubMed ID: 26237776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GABA in locus coeruleus regulates spontaneous rapid eye movement sleep by acting on GABAA receptors in freely moving rats.
    Kaur S; Saxena RN; Mallick BN
    Neurosci Lett; 1997 Feb; 223(2):105-8. PubMed ID: 9089684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depth-resolved fiber photometry with a single tapered optical fiber implant.
    Pisano F; Pisanello M; Lee SJ; Lee J; Maglie E; Balena A; Sileo L; Spagnolo B; Bianco M; Hyun M; De Vittorio M; Sabatini BL; Pisanello F
    Nat Methods; 2019 Nov; 16(11):1185-1192. PubMed ID: 31591577
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.