These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 37575940)

  • 1. Towards deep learning based smart farming for intelligent weeds management in crops.
    Saqib MA; Aqib M; Tahir MN; Hafeez Y
    Front Plant Sci; 2023; 14():1211235. PubMed ID: 37575940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nature-Inspired Search Method and Custom Waste Object Detection and Classification Model for Smart Waste Bin.
    Agbehadji IE; Abayomi A; Bui KN; Millham RC; Freeman E
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel deep learning-based method for detection of weeds in vegetables.
    Jin X; Sun Y; Che J; Bagavathiannan M; Yu J; Chen Y
    Pest Manag Sci; 2022 May; 78(5):1861-1869. PubMed ID: 35060294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weed target detection at seedling stage in paddy fields based on YOLOX.
    Deng X; Qi L; Liu Z; Liang S; Gong K; Qiu G
    PLoS One; 2023; 18(12):e0294709. PubMed ID: 38091355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of two deep learning-based approaches for detecting weeds growing in cabbage.
    Sun H; Liu T; Wang J; Zhai D; Yu J
    Pest Manag Sci; 2024 Jun; 80(6):2817-2826. PubMed ID: 38323798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weed Detection Using Deep Learning: A Systematic Literature Review.
    Murad NY; Mahmood T; Forkan ARM; Morshed A; Jayaraman PP; Siddiqui MS
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weed Identification by Single-Stage and Two-Stage Neural Networks: A Study on the Impact of Image Resizers and Weights Optimization Algorithms.
    Saleem MH; Velayudhan KK; Potgieter J; Arif KM
    Front Plant Sci; 2022; 13():850666. PubMed ID: 35548295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of synthetic images for training a deep learning model for weed detection and biomass estimation in cotton.
    Sapkota BB; Popescu S; Rajan N; Leon RG; Reberg-Horton C; Mirsky S; Bagavathiannan MV
    Sci Rep; 2022 Nov; 12(1):19580. PubMed ID: 36379963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dataset of annotated food crops and weed images for robotic computer vision control.
    Sudars K; Jasko J; Namatevs I; Ozola L; Badaukis N
    Data Brief; 2020 Aug; 31():105833. PubMed ID: 32577458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Inference Performance of Deep Learning Models for Real-Time Weed Detection in an Embedded Computer.
    Mwitta C; Rains GC; Prostko E
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating Cross-Applicability of Weed Detection Models Across Different Crops in Similar Production Environments.
    Sapkota BB; Hu C; Bagavathiannan MV
    Front Plant Sci; 2022; 13():837726. PubMed ID: 35574075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrarow Uncut Weed Detection Using You-Only-Look-Once Instance Segmentation for Orchard Plantations.
    Sampurno RM; Liu Z; Abeyrathna RMRD; Ahamed T
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards practical object detection for weed spraying in precision agriculture.
    Darbyshire M; Salazar-Gomez A; Gao J; Sklar EI; Parsons S
    Front Plant Sci; 2023; 14():1183277. PubMed ID: 38023838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of different deep convolutional neural networks for detection of broadleaf weed seedlings in wheat.
    Zhuang J; Li X; Bagavathiannan M; Jin X; Yang J; Meng W; Li T; Li L; Wang Y; Chen Y; Yu J
    Pest Manag Sci; 2022 Feb; 78(2):521-529. PubMed ID: 34561954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of convolutional neural networks for herbicide susceptibility-based weed detection in turf.
    Jin X; Liu T; McCullough PE; Chen Y; Yu J
    Front Plant Sci; 2023; 14():1096802. PubMed ID: 36818827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel semi-supervised framework for UAV based crop/weed classification.
    Khan S; Tufail M; Khan MT; Khan ZA; Iqbal J; Alam M
    PLoS One; 2021; 16(5):e0251008. PubMed ID: 33970938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TIA-YOLOv5: An improved YOLOv5 network for real-time detection of crop and weed in the field.
    Wang A; Peng T; Cao H; Xu Y; Wei X; Cui B
    Front Plant Sci; 2022; 13():1091655. PubMed ID: 36618638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weed detection and recognition in complex wheat fields based on an improved YOLOv7.
    Wang K; Hu X; Zheng H; Lan M; Liu C; Liu Y; Zhong L; Li H; Tan S
    Front Plant Sci; 2024; 15():1372237. PubMed ID: 38978522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep convolutional neural networks for image-based
    Gao J; French AP; Pound MP; He Y; Pridmore TP; Pieters JG
    Plant Methods; 2020; 16():29. PubMed ID: 32165909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Modal Deep Learning for Weeds Detection in Wheat Field Based on RGB-D Images.
    Xu K; Zhu Y; Cao W; Jiang X; Jiang Z; Li S; Ni J
    Front Plant Sci; 2021; 12():732968. PubMed ID: 34804085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.